
Values (or data)
representation

Advanced Compiler Construction
Michel Schinz — 2025–03–06

The problem

Values representation

The values representation problem: how to represent the values of the
source language in the target language?
Trivial in C and similar languages that have:

– no parametric polymorphism, and
– types corresponding directly to those of the target language (e.g. int,
long, double),

More difficult in languages that have either:
– parametric polymorphism, as exact types are not at compilation time, or
– dynamic types, for the same reason, or
– types not corresponding directly to those of the target.

Example

Consider the following L3 function:
(def pair-make
 (fun (f s)
 (let ((p (@block-alloc #_pair 2)))
 (@block-set! p 0 f)
 (@block-set! p 1 s)
 p)))

The L3 compiler knows nothing about the type of f and s, so some uniform
representation must be used.

Example

The same problem exists in Scala when using parametric polymorphism:
def pairMake[T,U](f: T, s: U): Pair[T,U] =
 new Pair[T,U](f, s)

The solutions

Boxing

Boxing: all values are represented uniformly by a pointer to a heap-allocated
block called a box and containing:

– the value,
– some information about its type.

Pros and cons:
– simple,
– very costly for small values (e.g. integers).

Tagging

Tagging: all values are represented uniformly by a pointer-sized word
containing either:

– a pointer to a boxed value, as before, or
– a small value (e.g. integer) with a tag identifying its type.

Pros and cons:
– simple,
– less costly than boxing,
– reduced range for some small values (e.g. integers).

Example: integer tagging

Integer tagging example: represent the source integer n as the target integer
2n + 1.

– distinguishable from (aligned) pointer by LSB,
– slightly reduced range (1 bit less).

Example: NaN tagging
IEEE 754 floating-point values (i.e. double) have special NaN values, returned
on error, identified by top 12 bits:

1 1 … 1 ? ? ? … ? ?

12 bits (must be 1) 52 arbitrary bits

NaN tagging:
– represent doubles as themselves,
– use 52 lower bits of NaNs to store tagged values:

– pointers,
– integers,
– etc.

On-demand boxing

(Un)boxing can be done on-demand for statically-typed languages:
– box when entering polymorphic context,
– unbox when returning to monomorphic context.

Pros and cons:
– no penalty for monomorphic code,
– can be expensive at runtime.

Also doable for dynamically-typed languages, but requires type inference.

Specialization

Specialization (or monomorphization): get back to simple case by
translating polymorphism away.
For example, if List[Int] appears in a program, a class representing lists of
integers is generated.
Pros and cons:

– avoids the cost of boxing and tagging,
– produces lots of code,
– can fail to terminate.

Partial specialization

Partial specialization:
– share specialized code as much as possible (e.g. specialize only once for all

reference types), and/or
– allow the programmer to specify when to specialize, and box otherwise.

Pros and cons:
– can provide the performance of specialization for critical code without the

cost.

Comparing solutions
Three representations of an object containing:

– the integer 25,
– the double 3.14
– the string "hello".

25

3.14

hello

51

3.14

hello

25

3.14

hello

fully boxed
boxed with

integer tagging (fully) specialized

Translation of operations
Independently of the chosen solution, operations acting on source values
must be adapted to the representation, e.g.:

– addition of boxed integers is done by:
1. fetching the two integers from their box,
2. adding them,
3. allocating a new box, storing the result in it.

– addition of tagged integers is done by:
1. untagging the two integers,
2. adding them,
3. tagging the result.

For tagging, one can do better though!

Tagged integer arithmetic

⟦n + m⟧ = 2[(⟦n⟧ – 1) / 2 + (⟦m⟧ – 1) / 2] + 1
= (⟦n⟧ – 1) + (⟦m⟧ – 1) + 1
= ⟦n⟧ + ⟦m⟧ – 1

⟦n – m⟧ = 2[(⟦n⟧ – 1) / 2 – (⟦m⟧ – 1) / 2] + 1
= (⟦n⟧ – 1) – (⟦m⟧ – 1) + 1
= ⟦n⟧ – ⟦m⟧ + 1

⟦n × m⟧ = 2[((⟦n⟧ – 1) / 2) × ((⟦m⟧ – 1) / 2)] + 1
= (⟦n⟧ – 1) × ((⟦m⟧ – 1) / 2) + 1
= (⟦n⟧ – 1) × (⟦m⟧ ≫ 1) + 1

L3 values
representation

Representation of L3 values

L3 has the following kinds of values:
1. functions,
2. tagged blocks,
3. integers,
4. characters,
5. booleans,
6. unit.

For now, we assume (incorrectly!) that functions are simple code pointers.
Tagged blocks are represented as pointers to themselves.
Integers, characters, booleans and the unit value are tagged.

L3 tagging scheme
In L3, we require the two LSBs of pointers to be 0, in order to use the tagging
scheme below:

Kind of value LSBs
Integer …12

Block (pointer) …002

Character …1102

Boolean …10102

Unit …00102

Values representation phase

The values representation phase of the L3 compiler:
– takes a "high-level" CPS program:

– values: all L3 values,
– primitives: all L3 primitives,

– produces an equivalent "low-level" CPS program:
– values: bit vectors and pointers (both 32 bits),
– primitives: instructions of the VM (similar to typical processor).

Specified as usual as a transformation function called ⟦·⟧, mapping high-level
CPS terms to their low-level equivalent.

Atoms
⟦n⟧ where n is a name =
 n
⟦i⟧ where i is an integer literal =
 2i+1
⟦c⟧ where c is a character literal =
 (code-point(c) ≪ 3) | 1102
⟦#t⟧ =
 110102
⟦#f⟧ =
 010102
⟦#u⟧ =
 00102

Continuations & functions
Continuations are restricted enough that they don't need to be translated:
⟦(letc ((c1 (cnt (n1,1 …) e1)) …) e)⟧ =
 (letc ((c1 (cnt (n1,1 …) ⟦e1⟧)) …) ⟦e⟧)
⟦(appc n a1 …)⟧ =
 (appc n ⟦a1⟧ …)

Functions must be translated, but we ignore it for now (see next lecture) and
assume the following incorrect translation:
⟦(letf ((f1 (fun (c1 n1,1 …) e1)) …) e)⟧ =
 (letf ((f1 (fun (c1 n1,1 …) ⟦e1⟧)) …) ⟦e⟧)
⟦(appf a nc a1 …)⟧ =
 (appf ⟦a⟧ nc ⟦a1⟧ …)

Integers (1)
⟦(if (int? a) ct ce)⟧ =
 (letp ((t1 (& ⟦a⟧ 1)))
 (if (= t1 1) ct ce))
⟦(letp ((n (+ a1 a2))) e)⟧ =
 (let* ((t1 (+ ⟦a1⟧ ⟦a2⟧))
 (n (- t1 1)))
 ⟦e⟧)
… other arithmetic primitives are similar.
⟦(if (< a1 a2) ct ce)⟧ =
 (if (< ⟦a1⟧ ⟦a2⟧) ct ce)
… other integer comparison primitives are similar.

& is bit-wise and

Integers (2)
⟦(letp ((n (block-alloc a1 a2))) e)⟧ =
 (let* ((t1 (shift-right ⟦a1⟧ 1))
 (t2 (shift-right ⟦a2⟧ 1))
 (n (block-alloc t1 t2)))
 ⟦e⟧)
⟦(letp ((n (block-tag a))) e)⟧ =
 (let* ((t1 (block-tag ⟦a⟧))
 (t2 (shift-left t1 1))
 (n (+ t2 1)))
 ⟦e⟧)
… other block primitives are similar.

Integers (3)

⟦(letp ((n (byte-read))) e)⟧ =
 (let* ((t1 (byte-read))
 (t2 (shift-left t1 1))
 (n (+ t2 1)))
 ⟦e⟧)
⟦(letp ((n (byte-write a))) e)⟧ =
 left as an exercise

Characters

⟦(letp ((n (char->int a))) e)⟧ =
 (letp ((n (shift-right ⟦a⟧ 2)))
 ⟦e⟧)
⟦(letp ((n (int->char a))) e)⟧ =
 (let* ((t1 (shift-left ⟦a⟧ 2))
 (n (+ t1 2)))
 ⟦e⟧)
⟦(if (char? v) ct ce)⟧ =
 left as an exercise

Booleans, unit, etc.

⟦(if (bool? a) ct ce)⟧ =
 (letp ((r (& ⟦a⟧ 11112)))
 (if (= r 10102) ct ce))
⟦(if (unit? a) ct ce)⟧ =
 left as an exercise
⟦(halt a)⟧ =
 left as an exercise

Exercise

How does the values representation phase translate the following CPS/L3
version of the successor function?
(letf ((succ (fun (c x)
 (letp ((t1 (+ x 1)))
 (appc c t1)))))
 succ)

