Dataflow analysis

Advanced Compiler Construction Michel Schinz - 2024-03-21

A first example : available expressions

Available expressions

The following C program fragment sets r to xy for $\mathrm{y}>0$. How can it be (slightly) optimised?
int $y_{1}=1 ;$
int $r=x ;$
while (y_{1} ! $=\mathrm{y}$) \{
int $t=y_{1} \times 2$;
if ($t<=y$) \{
$r=r * r$;
$y_{1}=y_{1} * 2$;
\} else \{
$r=r * x$
$\mathrm{y}_{1}=\mathrm{y}_{1}+1$;
Here, $y_{1} \star 2$ can be
replaced by t
Why is the optimization valid?
Because at line 7 , expression $y_{1} * 2$ is available

- no matter how we reach line $7, y_{1} * 2$ will have been computed previously at line 4,
- that computation is still valid at line 7 (no redefinition of y_{1} between those two points).
We can define for every program point the set of available expressions : the set of all non-trivial expressions whose value has already been computed at that point.
\}
2 \}

Available expressions

Formalizing the analysis

How can these ideas be formalized?

1. introduce a variable i_{n} for the set of expressions available before node n,
2. introduce a variable o_{n} for the set of expressions available after node n,
3. define equations between those variables,
4. solve those equations.

Equations

Solving equations

The equations can be solved by iteration:

- initialize all sets $i_{1}, \ldots, i_{9}, o_{1}, \ldots, o_{9}$ to the set of all non-trivial expressions in the program, here $\left\{y_{1} \star 2, y_{1}+1, r * r, r * x\right\}$,
- viewing the equations as assignments, compute the "new" value of those sets,
- iterate until fixed point is reached.

Initialization is done that way because we are interested in finding the largest sets satisfying the equations: the larger a set is, the more information it conveys (for this analysis).

Solving equations

Simplify by replacing all i_{k} variables by their value:
$\mathrm{O}_{1}=\{ \}$
$\mathrm{O}_{6}=\mathrm{O}_{5} \downarrow \mathrm{r}$
$\mathrm{O}_{2}=\mathrm{O}_{1}$
$\mathrm{O}_{7}=\mathrm{O}_{6} \downarrow \mathrm{y}_{1}$
$\mathrm{O}_{3}=\mathrm{O}_{2} \cap \mathrm{O}_{7} \cap \mathrm{O}_{10}$
$\mathrm{O}_{8}=\mathrm{O}_{5} \downarrow r$
$\mathrm{o}_{4}=\mathrm{o}_{3} \cup\left\{\mathrm{y}_{1} \star 2\right\}$
$\mathrm{O}_{9}=\mathrm{O}_{8} \downarrow \mathrm{y}_{1}$
$\mathrm{O}_{5}=\mathrm{O}_{4}$

Generalization

The equations for a node n have the following form:
$\mathrm{i}_{\mathrm{n}}=\mathrm{o}_{\mathrm{p} 1} \cap \mathrm{O}_{\mathrm{p} 2} \cap \ldots \cap \mathrm{O}_{\mathrm{pk}}$
where $p_{1} \ldots p_{k}$ are the predecessors of n.
$o_{n}=\operatorname{gen}_{A E}(n) \cup\left(i_{n} \backslash \operatorname{kill} l_{A E}(n)\right)$
where gen $n_{A E}(n)$ are the non-trivial expressions computed by n, and kill ${ }_{\text {AE }}(n)$ is the set of all non-trivial expressions that use a variable modified by n .
Substituting i_{n} in o_{n}, we get:
$\mathrm{O}_{\mathrm{n}}=\operatorname{gen}_{\mathrm{AE}}(\mathrm{n}) \cup\left[\left(\mathrm{o}_{\mathrm{p} 1} \cap \mathrm{O}_{\mathrm{p} 2} \cap \ldots \cap \mathrm{O}_{\mathrm{pk}}\right) \backslash \operatorname{kill}_{\mathrm{AE}}(\mathrm{n})\right]$
These are the dataflow equations for the available expressions dataflow analysis.

Solving equations

The simplified system is solved after 7 iterations:

$1 t^{\text {a }}$	1	2	3	4	5	6	7
${ }^{\circ}$	YR	\{\}	\{\}	\{\}	\{\}	\{\}	\{\}
O_{2}	YR	YR	\{\}	\{\}	\{\}	\{\}	\{\}
${ }^{\circ}$	YR	YR	R	\{\}	(\{\}	\{\}
${ }^{4} 4$	YR	YR	YR	$\left\{y_{1} * 2, r * r, r * x\right\}$	$\left\{y_{1} \times 2\right\}$	\} $\left\{y_{1} \times 2\right\}$	$\left\{y_{1} \star 2\right\}$
${ }^{\circ} 5$	YR	YR	YR	YR	\{ $\left.y_{1} * 2, r * r, r * x\right\}$	\{ $\left.\mathrm{y}_{1} \times 2\right\}$	$\left\{y_{1} \times 2\right\}$
${ }_{\circ} 6$	YR	Y	Y	Y		\{ $\left.\mathrm{y}_{1} \times 2\right\}$	$\left\{y_{1} \times 2\right\}$
${ }^{\circ} 7$	YR	R	\{\}	\{\}	\{\}	\} $\}$	\{\}
${ }^{\circ} 8$	YR	Y	Y	Y		\{ $\left.\mathrm{y}_{1} \times 2\right\}$	$\left\{y_{1} \times 2\right\}$
\bigcirc	YR	R	\{\}	\{\}	\{\}	\} $\}$	\{\}

Notation: $Y=\left\{\mathrm{y}_{1} * 2, \mathrm{y}_{1}+1\right\}, R=\{\mathrm{r} * \mathrm{r}, \mathrm{r} * \mathrm{x}\}, Y R=Y \cup R$

Generated expressions

The equation giving the expressions available at the exit of node n is: $\mathrm{o}_{\mathrm{n}}=\operatorname{gen}_{\mathrm{AE}}(\mathrm{n}) \cup\left(\mathrm{i}_{\mathrm{n}} \backslash \operatorname{kill} \mathrm{l}_{\mathrm{AE}}(\mathrm{n})\right)$
where gen $n_{A E}(n)$ are the non-trivial expressions computed by n, and kill ${ }_{A E}(n)$ is the set of all non-trivial expressions that use a variable modified by n. For this to be correct, expressions that are computed by n but that use a variable modified by n must not be part of gen AE (n). For example $\operatorname{gen}_{A E}(x=y * y)=\{y * y\}$ but genaE $(y=y * y)=\{ \}$

Dataflow analysis

Available expressions is one example of a dataflow analysis.

Dataflow analysis is an analysis framework that can approximate various properties of programs, which can then be used to do:

- common sub-expression elimination,
- dead code elimination,
- constant propagation,
- register allocation,
- etc.

Analysis scope

We only consider intra-procedural dataflow analyses (i.e. restricted to a single function) working on the control-flow graph of the function.

Reminder:

- CFG nodes are the statements of the function,
- CFG edges represent the flow of control: an edge from n_{1} to n_{2} means that control can flow immediately from n_{1} to n_{2}.

Live variable

Analysis \#2:
 live variables

A variable is said to be live at a given point if its value will be read later:

- clearly undecidable, but
- dataflow analysis can compute an approximation.

Liveness can be used to allocate registers, for example: a set of variables that are never live at the same time can share a single register.

Intuitions

Intuitively:

- a variable is live after a node if it is live before any of its successors,
- a variable is live before node n if it is either read by n, or live after n and not written by n,
- no variable is live after an exit node.

Equations

We associate to every node n a pair of variables $\left(\mathrm{i}_{n}, \mathrm{o}_{\mathrm{n}}\right)$ that give the set of variables that are live when the node is entered or exited, respectively, defined as follows:
$i_{n}=\operatorname{gen} n_{L V}(n) \cup\left(o_{n} \backslash\right.$ kill $\left._{L V}(n)\right)$
where gen $L_{L V}(n)$ is the set of variables read by n, and kill $_{L V}(n)$ is the set of variables written by n .
$o_{n}=i_{s 1} \cup i_{\text {s } 2} \cup \ldots \cup i_{\text {sk }}$
where $s_{1} \ldots s_{k}$ are the successors of n.
Substituting o_{n} in i_{n}, we get:
$i_{n}=\operatorname{gen} n_{L V}(n) \cup\left[\left(i_{s} \cup i_{s} \cup \ldots \cup i_{s k}\right) \backslash k i l l l_{L V}(n)\right]$

Equation solving

We want the sets of live variables to be as small as possible.
Therefore we initialize all sets to the empty set

Example

| \quad equations | solution |
| ---: | :--- | ---: |
| $i_{1}=i_{2} \backslash\{x\}$ | $i_{1}=\{ \}$ |
| $i_{2}=i_{3} \backslash\{y\}$ | $i_{2}=\{x\}$ |
| $i_{3}=\{x, y\} \cup\left(i_{4} \cup i_{5}\right)$ | $i_{3}=\{x, y\}$ |
| $i_{4}=\{x\} \cup\left(i_{6} \backslash\{z\}\right)$ | $i_{4}=\{x\}$ |
| $i_{5}=\{y\} \cup\left(i_{6} \backslash\{z\}\right)$ | $i_{5}=\{y\}$ |
| $i_{6}=\{z\}$ | $i_{6}=\{z\}$ |

solution
$\mathrm{i}_{1}=\{ \}$
$\mathrm{i}_{2}=\{\mathrm{x}\}$
$\mathrm{i}_{3}=\{\mathrm{x}, \mathrm{y}\}$
$i_{4}=\{x\}$
$\mathrm{i}_{6}=\{\mathrm{z}\}$

Using live variables

Neither x nor y is live at the same time as z .
Therefore, z can be replaced by x or y .

analysis result	
i_{1}	$=\{ \}$
i_{2}	$=\{x\}$
i_{3}	$=\{x, y\}$
i_{4}	$=\{x\}$
i_{5}	$=\{y\}$
i_{6}	$=\{z\}$

Analysis \#3:
 reaching definitions

Reaching definitions

The reaching definitions for a program point are the assignments that may have defined the values of variables at that point.
Can be approximated using dataflow analysis, and the result used to perform constant propagation, for example.

Intuitions

ntuitively:

- a definition reaches the beginning of a node if it reaches the exit of any of its predecessors,
- a definition contained in a node n always reaches the end of n itself
- a definition reaches the end of a node n if it reaches the beginning of n and is not killed by n itself.
(A node n kills a definition d if and only if n is a definition and defines the same variable as d.)
For now, we assume no definition reaches the beginning of the entry node.

Equations

We associate to every node n a pair of variables $\left(i_{n}, o_{n}\right)$ that give the set of definitions reaching the entry and exit of n, respectively, defined as follows: $i_{n}=o_{p 1} \cup o_{p 2} \cup \ldots \cup o_{p k}$
where $p_{1} \ldots p_{k}$ are the predecessors of n.
$o_{n}=\operatorname{gen} R_{R D}(n) \cup\left(i_{n} \backslash \operatorname{kill} l_{R D}(n)\right)$
where $\operatorname{gen}_{R D}(n)$ is $\{(x, n)\}$ if n is a definition of variable $x,\{ \}$ otherwise, and kill $_{R D}(n)$ is the set of definitions defining the same variable as n itself. Substituting i_{n} in o_{n}, we get:
$o_{n}=\operatorname{gen}_{R D}(n) \cup\left[\left(o_{p 1} \cup o_{p 2} \cup \ldots \cup o_{p k}\right) \backslash\right.$ kill $\left.l_{R D}(n)\right]$

Equation solving

We want the sets of reaching definitions to be as small as possible.
Therefore we initialize all sets to the empty set.

Example

equations

$o_{1}=\{(x, 1)\}$

$\mathrm{o}_{2}=\{(\mathrm{y}, 2)\} \cup \mathrm{o}_{1} \downarrow \mathrm{y}$
$\mathrm{O}_{3}=\{(\mathrm{z}, 3)\} \cup \mathrm{o}_{2} \downarrow \mathrm{z}$
$\mathrm{O}_{4}=\{(\mathrm{x}, 4)\} \cup\left(\mathrm{O}_{3} \cup \mathrm{O}_{6}\right) \downarrow x$ $\mathrm{O}_{5}=\{(\mathrm{z}, 5)\} \cup \mathrm{O}_{4} \downarrow \mathrm{z}$
$\mathrm{O}_{6}=\mathrm{O}_{5}$
$\mathrm{O}_{7}=\mathrm{O}_{6}$

	solution
	$0_{1}=\{(\mathrm{x}, 1)\}$
	$O_{2}=\{(\mathrm{x}, 1),(\mathrm{y}, 2)\}$
	$o_{3}=\{(x, 1),(y, 2),(z, 3)\}$
	$O_{4}=\{(x, 4),(y, 2),(z, 3),(z, 5)\}$
	$O_{5}=\{(x, 4),(y, 2),(z, 5)\}$
	$O_{6}=\{(x, 4),(y, 2),(z, 5)\}$
	$\mathrm{O}_{7}=\{(\mathrm{x}, 4),(\mathrm{y}, 2),(\mathrm{z}, 5)\}$

Notation:
$S \downarrow x=S \backslash\{$ all definitions of $x\}$

Using reaching definitions

A single constant definition of y reaches node 5 .
Therefore, y can be replaced by 3 in it.

Uninitialized variables

Note: if uninitialized variables are allowed, the above analysis can produce incorrect results.

equations

$$
\begin{aligned}
& \text { solution } \\
& O_{1}=\{(x, 1)\} \\
& O_{2}=\{(x, 1),(z, 2)\} \\
& O_{3}=\{(x, 3),(y, 5),(z, 2),(z, 4)\} \\
& O_{4}=\{(x, 3),(y, 5),(z, 4)\} \\
& O_{5}=\{(x, 3),(y, 5),(z, 4)\} \\
& O_{6}=\{(x, 3),(y, 5),(z, 4)\}
\end{aligned}
$$

Uninitialized variables

Solution: record all variables as "initialized in some unknown location" at the entry of the first node!

CFG	equations
$1 x=100$	$\mathrm{O}_{1}=\{(\mathrm{x}, 1),(\mathrm{y}$, ? $),(\mathrm{z}, ?)\}$
$2 \mathrm{z}=0$	$\mathrm{O}_{2}=\{(\mathrm{z}, 2)\} \cup \mathrm{o}_{1} \downarrow \mathrm{z}$
\downarrow	$\mathrm{O}_{3}=\{(\mathrm{x}, 3)\} \cup\left(\mathrm{O}_{2} \cup \mathrm{O}_{6}\right) \downarrow \mathrm{x}$
$3 \mathrm{x}=\mathrm{x}-1$	$\mathrm{O}_{4}=\{(\mathrm{z}, 4)\} \cup \mathrm{O}_{3} \downarrow \mathrm{z}$
\downarrow	$\mathrm{O}_{5}=\{(\mathrm{y}, 5)\} \cup \mathrm{O}_{4} \downarrow \mathrm{y}$
$4 z=z+y$	$\mathrm{O}_{6}=\mathrm{O}_{5}$

$$
\begin{aligned}
& \text { solution } \\
& \mathrm{O}_{1}=\{(\mathrm{x}, 1),(\mathrm{y}, ?),(\mathrm{z}, ?)\} \\
& \mathrm{O}_{2}=\{(\mathrm{x}, 1),(\mathrm{z}, 2)\} \\
& \mathrm{O}_{3}=\{(\mathrm{x}, 3),(\mathrm{y}, ?),(\mathrm{y}, 5), \ldots\} \\
& \mathrm{O}_{4}=\{(\mathrm{x}, 3),(\mathrm{y}, \mathrm{l}),(\mathrm{y}, 5),(\mathrm{z}, 4)\} \\
& \mathrm{O}_{5}=\{(\mathrm{x}, 3),(\mathrm{y}, 5),(\mathrm{z}, 4)\} \\
& \mathrm{O}_{6}=\{(\mathrm{x}, 3),(\mathrm{y}, 5),(\mathrm{z}, 4)\}
\end{aligned}
$$

Very busy expression

Analysis \#4:
 very busy
 expressions

An expression is very busy at some program point if it will definitely be evaluated before its value changes.
Can be approximated by dataflow analysis, and the result used to perform code hoisting: the computation of a very busy expression can be performed at the earliest point where it is busy.

Intuitions

ntuitively:

- an expression is very busy after a node if it is very busy in all of its successors,
- an expression is very busy before node n if it is either evaluated by n itself, or very busy after n and not killed by n,
- no expression is very busy after an exit node.
(A node kills an expression e iff it redefines a variable appearing in e.)

Equations

We associate to every node n a pair of variables $\left(\mathrm{i}_{n}, \mathrm{o}_{\mathrm{n}}\right)$ that give the set of expressions that are very busy when the node is entered or exited, respectively, defined as follows:
$i_{n}=\operatorname{genvB}(n) \cup\left(o_{n} \backslash\right.$ killvs $\left.(n)\right)$
where $\operatorname{gen}_{v B}(n)$ is the set of expressions evaluated by n, and killvB (n) is the set of expressions killed by n,
$o_{n}=i_{s} \cap i_{s} \cap \ldots \cap i_{s k}$
where $s_{1} \ldots s_{k}$ are the successors of n.
Substituting o_{n} in i_{n}, we get:
$i_{n}=\operatorname{gen}_{v B}(n) \cup\left[\left(i_{s 1} \cap i_{s 2} \cap \ldots \cap i_{s k}\right) \backslash\right.$ killvB $\left.(n)\right]$

Equation solving

We want the sets of very busy expressions to be as large as possible Therefore we initialize all sets to the set of all non-trivial expressions of the function.

Example

	equations
i_{1}	$=\{a+b\} \cup i_{2} \downarrow t$
i_{2}	$=\{a * b\} \cup i_{3} \downarrow u$
$i_{3}=i_{4} \cap i_{5}$	
$i_{4}=\{a-b\} \cup i_{6} \downarrow t$	
$i_{5}=\{a-b\} \cup i_{6} \downarrow u$	
$i_{6}=\{t * u\}$	

$i_{1}=\{a+b, a-b, a * b\}$ $i_{2}=\{a-b, a * b\}$
$i_{3}=\{a-b\}$ $i_{4}=\{a-b\}$ $i_{5}=\{a-b\}$ $i_{6}=\{t * u\}$

Notation:
$S \downarrow x=S \backslash\{$ all expressions using x$\}$

Using very busy expressions

Expression a-b is very busy before the conditional
Therefore, it can be evaluated earlier.

Equations summary

Analysis	Input equation	Output equation
available expressions	$\mathrm{i}_{\mathrm{n}}=\mathrm{O}_{\mathrm{p} 1} \cap \mathrm{O}_{\mathrm{p} 2} \cap \ldots \cap \mathrm{O}_{\mathrm{pk}}$	$\mathrm{o}_{\mathrm{n}}=\operatorname{gen}_{\text {AE }}(\mathrm{n}) \cup\left(i_{n} \backslash \operatorname{kill}_{\text {AE }}(\mathrm{n})\right)$
live variables	$i_{n}=\operatorname{gen}_{L V}(n) \cup\left(o_{n} \backslash \operatorname{kill}_{\text {LV }}(n)\right)$	$O_{n}=i_{s 1} \cup i_{s 2} \cup \ldots \cup i_{\text {sk }}$
reaching definitions	$\mathrm{i}_{\mathrm{n}}=\mathrm{o}_{\mathrm{p} 1} \cup \mathrm{o}_{\mathrm{p} 2} \cup \ldots \cup \mathrm{o}_{\mathrm{pk}}$	$\mathrm{o}_{\mathrm{n}}=\operatorname{gen}_{\mathrm{RD}}(\mathrm{n}) \cup\left(\mathrm{i}_{\mathrm{n}} \backslash \mathrm{kill} \mathrm{R}_{\mathrm{RD}}(\mathrm{n})\right.$)
very busy expressions	$i_{n}=\operatorname{gen}_{V B}(n) \cup\left(o_{n} \backslash \operatorname{kill}_{V B}(n)\right)$	$O_{\mathrm{n}}=i_{\text {s } 1} \cap i_{\text {s } 2} \cap \ldots \cap i_{\text {sk }}$

Classification of dataflow analyses

Taxonomy

Forward vs backward

- Forward analyses: the property of a node depends on those of its predecessors.
- Backward analyses: the property of a node depends on those if its successors.
May vs must:
- Must analyses: a property must be true in all neighbors to be true in a
node.
- May analyses: a property must be true in at least one neighbor to be true in a node.

Taxonomy

Forward
 Backward

Must

May
reaching definitions live variables

Speeding-up analyses

Dataflow analyses can be sped up by:

- a work-list algorithm, avoiding useless computations,
- equations ordering, speeding-up propagation,
- smaller CFGs using basic blocks,
- bit-vectors to represent sets.

Speeding-up dataflow analyses

Running example

To illustrate speed-up techniques, we reuse the live variables example:

CFG	equations	solution
1 x=read-int	$\mathrm{i}_{1}=\mathrm{i}_{2} \backslash\{\mathrm{x}\}$	$\mathrm{i}_{1}=\{ \}$
\downarrow	$\mathrm{i}_{2}=\mathrm{i}_{3} \backslash\{\mathrm{y}\}$	$\mathrm{i}_{2}=\{\mathrm{x}\}$
$2 \mathrm{y}=$ read-int	$\mathrm{i}_{3}=\{\mathrm{x}, \mathrm{y}\} \cup\left(\mathrm{i}_{4} \cup \mathrm{i}_{5}\right)$	$i_{3}=\{x, y\}$
\downarrow	$\mathrm{i}_{4}=\{x\} \cup\left(\mathrm{i}_{6} \backslash\{\mathrm{z}\}\right)$	$\mathrm{i}_{4}=\{\mathrm{x}\}$
3 if $x<y$	$i_{5}=\{y\} \cup\left(i_{6} \backslash\{z\}\right)$	$\mathrm{i}_{5}=\{\mathrm{y}\}$
$\downarrow \quad \downarrow$	$i_{6}=\{\mathrm{z}\}$	$\mathrm{i}_{6}=\{\mathrm{z}\}$

Base case: iteration

Computation by iteration: 3 iterations with 6 computations each, for a total of 18 computations.

Iteration	\mathbf{i}_{1}	\mathbf{i}_{2}	\mathbf{i}_{3}	\mathbf{i}_{4}	\mathbf{i}_{5}	\mathbf{i}_{6}
$\mathbf{0}$	$\}$	$\}$	$\}$	$\}$	$\}$	$\}$
$\mathbf{1}$	$\}$	$\}$	$\{x, y\}$	$\{x\}$	$\{y\}$	$\{z\}$
$\mathbf{2}$	$\}$	$\{x\}$	$\{x, y\}$	$\{x\}$	$\{y\}$	$\{z\}$
$\mathbf{3}$	$\}$	$\{x\}$	$\{x, y\}$	$\{x\}$	$\{y\}$	$\{z\}$

$$
\begin{aligned}
& i_{1}=i_{2} \backslash\{x\}, i_{2}=i_{3} \backslash\{y\}, i_{3}=\{x, y\} \cup\left(i_{4} \cup i_{5}\right), \\
& i_{4}=\{x\} \cup\left(i_{6} \backslash\{z\}\right), i_{5}=\{y\} \cup\left(i_{6} \backslash\{z\}\right), i_{6}=\{z\}
\end{aligned}
$$

Work-list algorithm

Work-list algorithm:

- remember, for every variable v, the set dep(v) of the variables whose value depends on v,
- whenever some variable v changes, only re-compute the variables that belong to dep(v).

Work-list algorithm in Scala

type Solution[T] = PartialFunction[Int, T]
def solve[T](eqs: Seq[Solution[T] => T],
dep: Seq[Set[Int]],
ini: T): Solution[T] = \{
def loop(q: Seq[Int], sol: Solution[T]): Solution[T] = q match \{
case Seq(i, is a _*) =>
val $y=\operatorname{eqs}(i)($ sol $)$
if (y == sol(i))

loop(is, sol)

else
loop(is ++ (dep(i) -- is), Map(i -> y) orElse sol) case $\mathrm{Seq}($) =>
sol
\}
loop(eqs.indices, (_ => ini))

Work-list

It.	9	i_{1}	i_{2}	i_{3}	i_{4}	i_{5}	i_{6}
0	[$\left.i_{1}, i_{2}, i_{3}, i_{4}, i_{5}, i_{6}\right]$	\{\}	\{\}	\{\}	\{\}	\{\}	\{\}
1	[$\left.\mathbf{i}_{2}, i_{3}, i_{4}, i_{5}, i_{6}\right]$	\{\}	\{\}	\{\}	\{\}	\{\}	\{\}
2	[[i3, i_{4}, i_{5}, i_{6}]	\{\}	\{\}	\{\}	\{\}	\{\}	\{\}
3	[$\left.\mathbf{i}_{4}, i_{5}, i_{6}, i_{2} i_{2}\right]$	\{\}	\{\}	$\{\mathrm{x}, \mathrm{y}$ \}	\{\}	\{\}	\{\}
4	$\left[i_{5}, i_{6}, i_{2}, i_{1} i_{3}\right]$	\{\}	\{\}	$\{\mathrm{x}, \mathrm{y}\}$	$\{\mathrm{x}\}$	\{\}	\{\}
5	[$\left.\mathbf{i}_{6}, i_{2}, i_{3}\right]$	\{\}	\{\}	$\{\mathrm{x}, \mathrm{y}$ \}	$\{x\}$	\{y\}	\{\}
6	[$\left.i_{2}, i_{3}, i_{4}, i_{5}\right]$	\{\}	\{\}	$\{\mathrm{x}, \mathrm{y}\}$	$\{\mathrm{x}\}$	\{y\}	\{z\}
7	[$\left.\mathbf{i}_{3}, i_{4}^{4}, i_{5}, i_{1}\right]$	\{\}	\{x\}	$\{x, y\}$	$\{x\}$	\{y\}	\{z\}
8	$\left[i_{4}, i_{5}, i_{1}\right]$	\{\}	$\{x\}$	$\{\mathrm{x}, \mathrm{y}\}$	$\{\mathrm{x}\}$	\{y\}	\{z\}
9	[${\left.\mathbf{i s}, i_{1}\right]}^{1}$	\{\}	\{x\}	$\{x, y\}$	$\{x\}$	\{y\}	\{z\}
10	[\mathbf{i}_{1}]	\{\}	$\{x\}$	$\{\mathrm{x}, \mathrm{y}\}$	$\{\mathrm{x}\}$	\{y\}	\{z\}
11	[]	\{\}	\{x\}	$\{\mathrm{x}, \mathrm{y}\}$	$\{x\}$	\{y\}	\{z\}
$\begin{aligned} & i_{1}=i_{2} \backslash\{x\}, i_{2}=i_{3} \backslash\{y\}, i_{3}=\{x, y\} \cup\left(i_{4} \cup i_{5}\right), \\ & i_{4}=\{x\} \cup\left(i_{6} \backslash\{z\}\right), i_{5}=\{y\} \cup\left(i_{6} \backslash\{z\}\right), i_{6}=\{z\} \end{aligned}$							

Node ordering

The work-list algorithm needs "only" 11 computations, but: - would be faster with work-list reversed,

- that's because live variables is a backward analysis.

Node ordering orders the elements of the work-list so that the solution is computed as fast as possible.

(Reverse) post-order

Backward analyses: use post-order traversal of CFG.
Forward analyses: use reverse post-order traversal of CFG.

Post-order:
654321 or 645321
Reverse post-order:
123456 or 123546

Note: reverse post-order is not the same as pre-order! Pre-order:
123465 or 123564

Post-order work-list

Post-order work-list: only 6 computations required.

It.	9	i_{1}	i_{2}	i_{3}	i_{4}	i_{5}	i_{6}
0	$\left[i_{6}, i_{5}, i_{4}, i_{3}, i_{2}, i_{1}\right]$	\{\}	\{\}	\{\}	\{\}	\{\}	\{\}
1	[$\left.\mathbf{i}_{5}, i_{4}, i_{3}, i_{3}, i_{2}, i_{1}\right]$	\{\}	\{\}	\{\}	\{\}	\{\}	\{z\}
2	[$\left.\mathbf{i}_{4}, i_{3}, i_{2}, i_{1}\right]$	\{\}	\{\}	\{\}	\{\}	\{y\}	\{z\}
3	$\left[i_{3}, i_{2}, i_{1}\right]$	\{\}	\{\}	\{\}	$\{\mathrm{x}$ \}	\{y\}	\{z\}
4	[\mathbf{i}_{2}, i_{1}]	\{\}	\{\}	$\{\mathrm{x}, \mathrm{y}$ \}	\{x\}	\{y\}	\{z\}
5	[\mathbf{i}_{1}]	\{\}	\{x\}	$\{x, y\}$	$\{x\}$	\{y\}	\{z\}
6	[]	\{\}	\{x\}	\{ $x, y\}$	\{x\}	\{y\}	\{z\}

$$
\begin{aligned}
& i_{1}=i_{2} \backslash\{x\}, i_{2}=i_{3} \backslash\{y\}, i_{3}=\{x, y\} \cup\left(i_{4} \cup i_{5}\right), \\
& i_{4}=\{x\} \cup\left(i_{6},\{z\}\right), i_{5}=\{y\} \cup\left(i_{6} \backslash\{z\}\right), i_{6}=\{z\}
\end{aligned}
$$

Exercise

Is it true that once we order the work-list, we only have to compute each equation once, or not?
If not, in which case(s) do we have to recompute equations?

Basic blocks

CFG nodes can be basic blocks instead of instructions:

- reduces the size of the CFG,
- variables are attached to basic blocks, not instructions,
- computing the solution for instructions is easy given that for basic blocks.

Bit vectors

All dataflow analyses we have seen work on sets of values. If they are dense,
represent them as bit vectors:

- uses only one bit per element,
- union is "bitwise or",
- intersection is "bitwise and",
- complement is "bitwise inversion",
- etc.

CFG with basic blocks

CFG	
if $x<y$	
$\downarrow \quad \downarrow$	
$2 \mathrm{z}=\mathrm{x} \quad 3 \mathrm{z}=\mathrm{y}$	
\downarrow ¢	
4 print z	

	equations	solution
i_{1}	$=\left(i_{2} \cup i_{3} \backslash\{x, y\}\right.$	$i_{1}=\{ \}$
$i_{2}=\{x\} \cup\left(i_{4} \backslash\{z\}\right)$	$i_{2}=\{x\}$	
$i_{3}=\{y\} \cup\left(i_{4} \backslash\{z\}\right)$	$i_{3}=\{y\}$	
$i_{4}=\{z\}$	$i_{4}=\{z\}$	

The solution for individual instructions is computed from the basic-block solution, in a single pass - here backwards:
$i_{1 c}=\{x, y\} \cup\left(i_{2} \cup i_{3}\right)=\{x, y\}$
$\mathrm{i}_{1 \mathrm{~b}}=\mathrm{i}_{\mathrm{i}_{c}} \backslash\{\mathrm{y}\}=\{\mathrm{x}\}$
$i_{1 a}=i_{1 b} \backslash\{x\}=\{ \}$

Bit vectors example

original equations
$i_{1}=i_{2} \backslash\{x\}$
$i_{2}=i_{3} \backslash\{y\}$
$i_{3}=\{x, y\} \cup\left(i_{4} \cup i_{5}\right)$
$i_{4}=\{x\} \cup\left(i_{6} \backslash\{z\}\right)$
$i_{5}=\{y\} \cup\left(i_{6} \backslash\{z\}\right)$
$i_{6}=\{z\}$
bit vector equations
$\mathrm{i}_{1}=\mathrm{i}_{2} \& \sim 100$
$\mathrm{i}_{2}=\mathrm{i}_{3} \& \sim 010$
$i_{3}=110 \mid\left(i_{4} \mid i_{5}\right)$
$\mathrm{i}_{4}=100 \mid\left(\mathrm{i}_{6} \& \sim 001\right)$
$\mathrm{i}_{5}=010 \mid\left(\mathrm{i}_{6} \& \sim 001\right)$
$i_{6}=001$
original solution
$\mathrm{i}_{1}=\{ \}$
$\mathrm{i}_{2}=\{\mathrm{x}\}$
$i_{3}=\{x, y\}$
$i_{4}=\{x\}$
$i_{5}=\{y\}$
$i_{6}=\{z\}$
bit vector solution
$\mathrm{i}_{1}=000$
$\mathrm{i}_{2}=100$
$i_{3}=110$
$\mathrm{i}_{4}=100$
$\mathrm{i}_{5}=010$
$i_{6}=001$

Summary

Dataflow analysis is a framework that can be used to approximate various programs properties, e.g.:

- liveness,
- available expressions,
- very busy expressions,
- reaching definitions.

These approximations can be used for optimizations like:

- register allocation,
- constant propagation,
- etc.

