Code optimization

Advanced Compiler Construction Michel Schinz – 2024-03-28

Optimization

Goal: rewrite the program to a new one that is:

- behaviorally equivalent to the original one,
- better in some respect e.g. faster, smaller, more energy-efficient, etc.
- Optimizations can be broadly split in two classes:

on the target architecture,

target architecture.

This lesson: machine-independent, rewriting optimizations.

- machine-independent optimizations are high-level and do not depend
- machine-dependent optimizations are low-level and depend on the

IRs and optimizations

The importance of IRs

Intermediate representations (IRs) have a dramatic impact on optimizations, which generally work in two steps: 1. the program is analyzed to find optimization opportunities, 2. the program is rewritten based on the analysis.

The IR should make both steps as easy as possible.

Case 1: constant propagation

Consider the following program fragment in some imaginary IR: x ← 7

 $\bullet \bullet \bullet$

Question: can all occurrences of x be replaced by 7? Answer: it depends on the IR:

- if it allows multiple assignments, no (further data-flow analyses are required),
- if it disallows multiple assignment, yes!

Other simple optimizations

Multiple assignments make most simple optimizations hard:

- common subexpression elimination, which consists in avoiding the repeated evaluation of expressions,
- (simple) dead code elimination, which consists in removing assignments to variables whose value is not used later,
- etc.

of a variable that appear in the program.

- Common problem: analyses are required to distinguish the various "versions"
- Conclusion: a good IR should not allow multiple assignments to a variable!

Case 2: inlining

parameters replaced by the actual arguments. inlining on the AST – which might look sensible at first.

- Inlining replaces a call to a function by a copy of the body of that function, with
- The IR used also has a dramatic impact on it, as we can see if we try to do

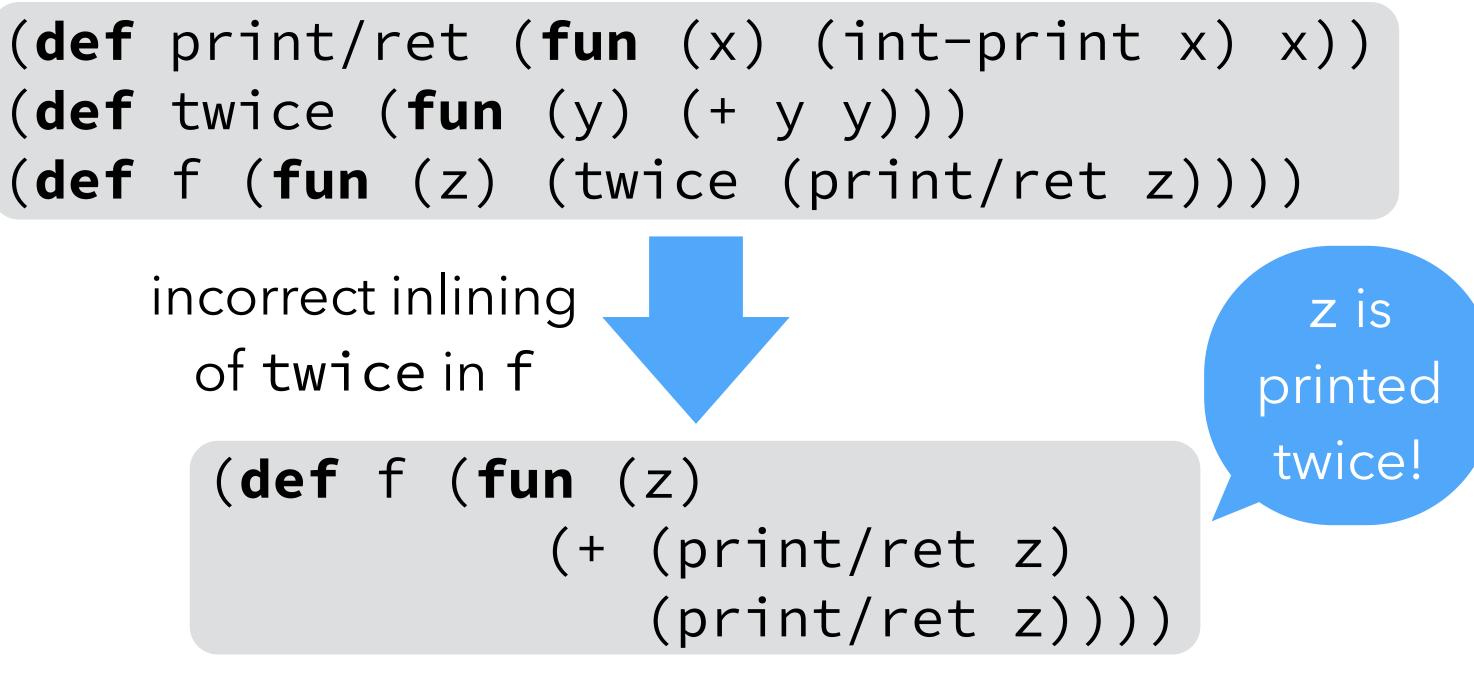
Naïve inlining: problem #1

(**def** twice (**fun** (y) (+ y y)))

incorrect inlining of twice in f

(**def** f (**fun** (z)

Possible solution: bind actual parameters to variables (using a let) to ensure that they are evaluated at most once.

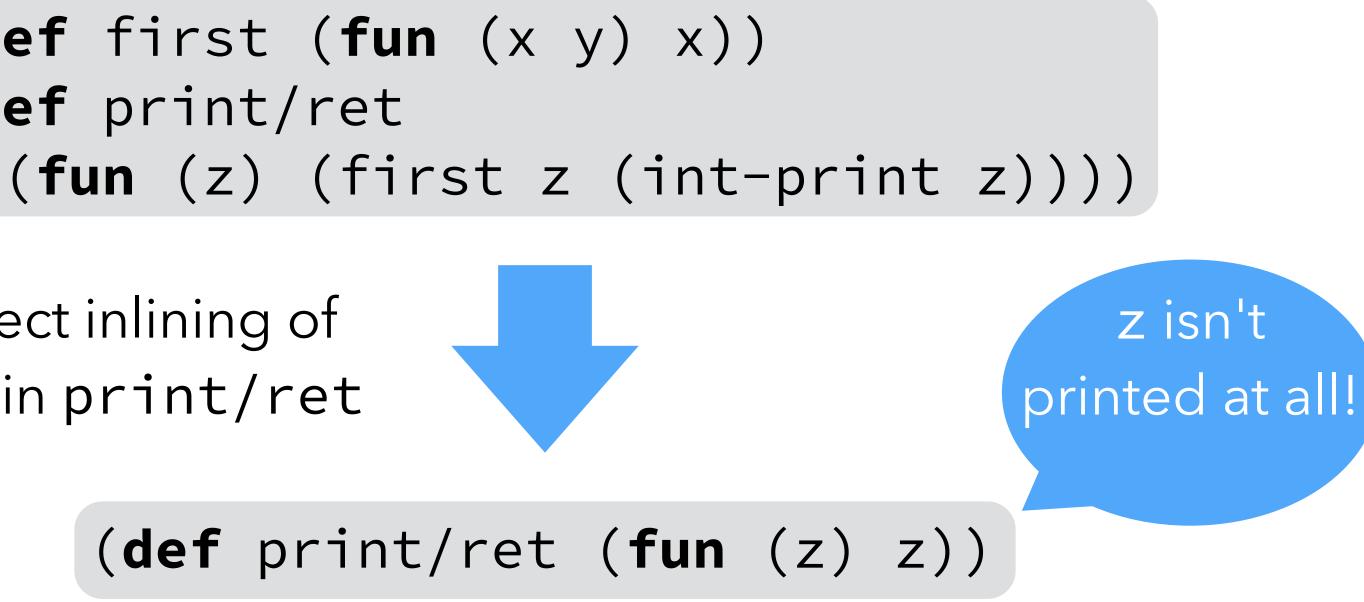


Naïve inlining: problem #2

(**def** first (**fun** (x y) x)) (**def** print/ret

incorrect inlining of first in print/ret

Possible solution: bind actual parameters to variables (using a let) to ensure that they are evaluated at least once.



Common solution:

bind actual arguments to variables before using them in the body of the inlined function.

However:

- the IR can also avoid the problem by ensuring that actual parameters are
- always atoms (variables/constants). Conclusion:
- a good IR should only allow atomic arguments to functions.

IR comparison

Conclusion:

- standard RTL/CFG is:
 - bad as its variables are mutable, but
 - good as it allows only atoms as function arguments,
- RTL/CFG in SSA form and CPS/L₃ are:
 - good as their variables are immutable,
 - good as they only allow atoms as function arguments.

Simple CPS/L₃ optimizations

Rewriting optimizations

The rewriting optimizations for CPS/L₃ are specified as a set of rewriting rules of the form T \Rightarrow_{opt} T'. These rules rewrite a CPS/L₃ term T to an equivalent – but hopefully more efficient – term T'.

(Non-)shrinking rules

We can distinguish two classes of rewriting rules: be applied at will,

one, and must be applied carefully. Except for inlining, all optimizations we will see are shrinking.

- 1. shrinking rules rewrite a term to an equivalent but smaller one, and can
- 2. non-shrinking rules rewrite a term to an equivalent but potentially larger

Optimization contexts

- Rewriting rules can only be applied in specific locations. For example, it would be incorrect to try to rewrite the parameter list of a function. We express this constraint by specifying all the **contexts** in which it is valid to perform a rewrite, where a context is a term with a single **hole** denoted by \Box .
- The hole of a context C can be plugged with a term T, an operation written as C[T].
- For example, if C is (if \Box ct cf), then C[(= x y)] is
- (if (= x y) ct cf).

Optimization contexts

 $C_{opt} ::= \Box$

 $\begin{array}{l} (let_{p} \ ((n \ (p \ a_{1} \ ...))) \ C_{opt}) \\ | (let_{c} \ ((c_{1} \ e_{1}) \ ... \ (c_{i} \ (cnt \ (n_{i,1} \ ...) \ C_{opt})) \ ... \ (c_{k} \ e_{k})) \ e) \\ | (let_{c} \ ((c_{1} \ e_{1}) \ ...) \ C_{opt}) \\ | (let_{f} \ ((f_{1} \ e_{1}) \ ... \ (f_{i} \ (fun \ (n_{i,1} \ ...) \ C_{opt})) \ ... \ (f_{k} \ e_{k})) \ e) \\ | (let_{f} \ ((f_{1} \ e_{1}) \ ...) \ C_{opt}) \end{aligned}$

Optimization relation

By combining the optimization rewriting rules – presented later – and the optimization contexts, it is possible to specify the optimization relation \Rightarrow_{opt} that rewrites a term to an optimized version: $C_{opt}[T] \Rightarrow_{opt} C_{opt}[T']$ where $T \Rightarrow_{opt} T'$

Dead code elimination

(let_p ((n (p a₁...))) e) ⇒_{opt} e

 $(let_f ((n_1 f_1) ... (n_i f_i) ... (n_k f_k)) e)$ \rightarrow_{opt} (let_f ((n₁ f₁) ... (n_k f_k)) e) [when n_i is not free in { $f_1, ..., f_{i-1}, f_{i+1}, ..., f_k, e$ }]

The rule for continuations is similar to the one for functions.

- [when n is not free in e and p ∉ { byte-read, byte-write, block-set! }]

Dead code elimination

Limitation:

Does not eliminate dead, mutually-recursive functions. Solution:

- start from the main expression of the program, and
- identify all functions transitively reachable from it.

All unreachable functions are dead.

the program, and eachable from it.

 $(let_p ((n_1 (+ a_1 a_2))))$ $C_{opt}[(let_p ((n_2(+ a_1 a_2)))e)])$ \rightarrow_{opt} (let_p ((n₁ (+ a₁ a₂))) C_{opt}[e{n₂ \rightarrow n₁}])

 $(let_p ((n_1(-a_1a_2))))$ $C_{opt}[(let_p ((n_2(-a_1a_2)))e)])$ \rightarrow_{opt} (let_p ((n₁ (- a₁ a₂))) C_{opt}[e{n₂ \rightarrow n₁}])

Limitation:

Some opportunities are missed because of scoping. Example:

Common subexpression (+ y z) is not optimized: (**let**_c ((c1 (**cnt** () (**let**_p ((x1 (+ y z))) ...)))) (c2 (**cnt** () (**let**_p ((x2 (+ y z))) ...)))) •••

n-reduction

 $(let_c ((c_1 e_1) ...$ $(c_i (cnt (n_1...) (app_c dn_1...)))...$ $(c_k e_k))$ e) \Rightarrow_{opt} (let_c ((c₁ e₁{c_i \rightarrow d}) ... (c_k e_k{c_i \rightarrow d})) e{c_i \rightarrow d}) $(let_f ((n_1 f_1) ...$ $(n_i (fun (cm_1...) (app_f g cm_1...))...$ $(n_k f_k))$ e) \rightarrow_{opt} (let_f ((n₁ f₁{n_i \rightarrow g}) ... (n_k f_k{n_i \rightarrow g})) e{n_i \rightarrow g}) [when $g \notin \{m_1, \ldots\}$]

Constant folding (1)

$(let_p ((n (+ |_1 |_2)))e)$ $\Rightarrow_{opt} e\{n \rightarrow (|_1 + |_2)\}$ [when I_1 and I_2 are integer literals]

$(let_p ((n(-|_1|_2)))e)$ $\Rightarrow_{opt} e\{n \rightarrow (|_1 - |_2)\}$ [when I_1 and I_2 are integer literals]

$(let_p ((n (* |_1 |_2)))e)$ $\Rightarrow_{opt} e\{n \rightarrow (|_1 \times |_2)\}$ [when I_1 and I_2 are integer literals]

Constant folding (2)

(if (=
$$aa$$
) $c_t c_f$)
 \Rightarrow_{opt} ($app_c c_t$)

Neutral/absorbing elements

Block primitives

(let_p ((b(block-allocts))) C_{opt}[(let_p ((u (block-set! bia))) C'_{opt}[(let_p ((n (block-get bi)))e)]) →opt (letp ((b(block-allocts))) C_{opt}[(let_p ((u (block-set! bia))) $C'_{opt}[e\{n \rightarrow a\}])])$ [when tag t identifies a block that is not modified after initialization, e.g. a closure block]

CPS/L₃ contains the following block primitives:

- block-alloc tag size
- block-tag block
- block-size block
- block-get block index
- block-set! block index value

Informally describe three rewriting optimizations that could be performed on these primitives, and in which conditions they could be performed.

(Non-)shrinking inlining

We can distinguish two kinds of inlining: once, 2. non-shrinking inlining, for other functions/continuations. Shrinking inlining can be applied at will, non-shrinking cannot.

- 1. **shrinking inlining**, for functions/continuations that are applied exactly

Shrinking Inlining

 $(let_f ((f_1 e_1) \dots (f_i (f_u n_{i,1} \dots) e_i)) \dots (f_k e_k))$ $C_{opt}[(app_f f_i c m_1 ...)])$ \rightarrow_{opt} (let_f ((f₁ e₁) ... (f_k e_k)) $C_{opt}[e_i\{c_i \rightarrow c\}\{n_{i,1} \rightarrow m_1\}...])$ [when f_i is not free in C_{opt} , e_1 , ..., e_n]

Similar rules exist to do the inlining inside of the body of one of the functions.

Non-shrinking Inlining

preserve their global uniqueness: $(let_{f} (... (f_{i} (fun (c_{i} n_{i,1} ...) e_{i})) ...))$ $C_{opt}[(app_f f_i c m_1 ...)])$ \Rightarrow_{opt} (let_f (... (f_i (fun (c_i n_{i,1} ...) e_i)) ...) $C_{opt}[e_i\{c_i \rightarrow c\}\{n_{i,1} \rightarrow m_1\}...])$

- In non-shrinking inlining, fresh versions of bound names should be created to

Similar rules exist to do the inlining inside of the body of one of the functions.

Inlining heuristics (1)

They typically combine several factors, like:

- the size of the candidate function smaller ones should be inlined more eagerly than bigger ones,
- the number of times the candidate is called in the whole program a function called only a few times should be inlined,

Heuristics must be used to decide when to perform non-shriking inlining.

(continued on next slide)

Inlining heuristics (2)

- the nature of the candidate not much gain can be expected from the inlining of a recursive function,
- the kind of arguments passed to the candidate, and/or the way these are used in the candidate – constant arguments could lead to further reductions in the inlined candidate, especially if it combines them with other constants,
- etc.

Imagine an imperative intermediate language equipped with a return statement to return from the current function to its caller.

- 1. Describe the problem that would appear when inlining a function containing such a return statement.
- 2. Explain how a return statement could be encoded in CPS/L₃ and why such an encoding would not suffer from the above problem.

Exercise

CPS/L₃ "contification"

Contification: transforms functions into continuations. Interesting optimization as it transforms functions, which are expensive (closures) into continuations, which are cheap.

Contification

to efficient compiled code. (**def** fact (fun (x))(**rec** loop ((i 1) (r 1)) (**if** (> i x) r (loop (+ i 1) (* r i)))))

Example: the loop function in the L_3 example below can be contified, leading

Contifiability

location – because then it does not need a return continuation.

- Non-recursive case: true iff that function is only used in appf nodes, in function position, and always passed the same return continuation. - Recursive case: slightly more involved – see later.
- A CPS/L₃ function is contifiable if and only if it always returns to the same

Non-recursive contification

The contification of the non-recursive function f is given by: $(let_{f} ((f(fun (ca_{1}...)e))))$ $C_{opt}[C'_{opt}(app_{f} f c_{0} n_{1,1} ...), (app_{f} f c_$ $\rightarrow_{opt} C_{opt}[(let_c (m(cnt (a_1))))]$ $C'_{opt}[(app_c m n_{1,1} ...), (app_c m n_{2,1} ...)]$

where:

- f does not appear free in C_{opt} or C'_{opt} ,
- $-c_0$ is the (single) return continuation that is passed to function f.

 $-C'_{opt}$ is the smallest (multi-hole) context enclosing all applications of f,

following two ways:

1. applied to a common return continuation, or

2. called in tail position by a function in F. common continuation.

Recursive contifiability

- A set of mutually-recursive functions $F = \{f_1, ..., f_n\}$ is contifiable which we write Cnt(F) – if and only if every function in F is always used in one of the
- Intuitively, this ensures that all functions in F eventually return through the

Example

As an example, functions even and odd in the CPS/L₃ translation of the following L₃ term are contifiable:

(letrec

((even (**fun** (x) (if (= 0 x) #t(odd (**fun** (x)

(even 12))

Cnt(F = {even, odd}) is satisfied since:

- the single use of odd is a tail call from even \in F,

- even is tail-called from odd \in F and called with the continuation of the

letrec statement – the common return continuation c_0 for this example.

- Given a set of mutually-recursive functions $(let_{f} ((f_{1} e_{1}) (f_{2} e_{2}) ... (f_{n} e_{n})))$ e)
- calls to functions in F appear either:
 - in the term e, or
- in the body of exactly one function $f_i \notin F$. Therefore, two separate rewriting rules must be defined, one per case.

Recursive contification

the condition Cnt(F) for some $F \subseteq \{f_1, \ldots, f_n\}$ can only be true if all the non tail

Recursive contification #1

let_f, and Cnt(F) holds: $(let_f ((f_1 (fun (c_1 a_{1,1} ...) e_1)) ... (f_n ...))$ C_{opt}[e]) \rightarrow_{opt} (let_f ((f_{i+1} (fun (C_{i+1} a_{i+1,1}...) e_{i+1}))...(f_n...)) $C_{opt}[(let_c ((m_1 (cnt (a_{1,1}...)$

e*)))

where f_1, \ldots, f_i do not appear free in C_{opt} and e is minimal. continuation applications.

- Case 1: all non tail calls to functions in $F = \{f_1, ..., f_i\}$ appear in the body of the

 - $e_1 (c_1 \rightarrow c_0)) \dots)$
- Note: the term t* is t with all applications of contified functions transformed to

Recursive contification #2

Case 2: all non tail calls to functions in $F = \{f_1, ..., f_i\}$ appear in the body of the function f_n, and Cnt(F) holds: $(let_f ((f_1 (f_1 (f_1 (c_1 a_{1,1} ...) e_1)) ...))$ $(f_n (fun (c_n a_{n,1} ...) C_{opt}[e_n]))) e)$ $\Rightarrow_{opt} (let_f ((f_{i+1} (fun (C_{i+1} a_{i+1,1} ...) e_{i+1})) ...$ $(f_n (f_n (c_n a_{n,1} ...)))$ $C_{opt}[(let_c ((m_1 (cnt (a_{1,1}...)$

e_n*))))e) where f_1, \ldots, f_i do not appear free in C_{opt} and e_n is minimal.

```
e_1 (c_1 \rightarrow c_0)
...)
```

Contifiable subsets

potentially contifiable functions are obtained by:

1. building the tail-call graph of its functions, identifying the functions that call each-other in tail position,

2. extracting the strongly-connected components of that graph. together, i.e. $Cnt(F_i)$, or not contifiable at all – i.e. none of its subsets of functions are contifiable.

Given a let_f term defining a set of functions $F = \{f_1, ..., f_n\}$, the subsets of F of

A given set of strongly-connected functions $F_i \subseteq F$ is then either contifiable