Register allocation

Advanced Compiler Construction Michel Schinz – 2024–04–11

Register allocation

Register allocation consists in:

- rewriting a program that makes use of an unbounded number of virtual or pseudo-registers,
- into one that only uses physical (machine) registers.
 Some virtual registers might have to be **spilled** to memory.
 Register allocation is done:
 - very late in the compilation process typically only instruction scheduling comes later,
 - on an IR very close to machine code.

We will do register allocation on an RTL with: link register R_{LK}),

- unbounded number of virtual registers v_0 , v_1 , ... Of course, virtual registers are only available before register allocation.

Setting the scene

- n machine registers R_0, \ldots, R_{n-1} (some with non-numerical indexes like the

Running example

	n l	L ₃		
(defrec gcd (fun (a b) (if (= 0) a (gcd	•		а	b)))))

Calling conventions:

- the arguments are passed in R_1 , R_2 , ...
- the return address is passed in R_{LK},
- the return value is passed in R_1 .

Euclid's algorithm to compute greatest common divisor.

In RTL

gcd: $R_3 \leftarrow done$ if $R_2 = 0$ goto R_3 $R_3 \leftarrow R_2$ $\mathsf{R}_2 \leftarrow \mathsf{R}_1 \ \% \ \mathsf{R}_2$ $R_1 \leftarrow R_3$ $R_3 \leftarrow gcd$ goto R_3 done: goto R_{LK}

Register allocation example

allocable

registers:

 $R_1, R_2, R_3,$

 R_{LK}

Before register allocation

gcd:	$v_0 \leftarrow R_{LK}$
	$V_1 \leftarrow R_1$
	$v_2 \leftarrow R_2$
loop:	v₃ ← done
	if $v_2 = 0$ goto v_3
	$V_4 \leftarrow V_2$
	$V_2 \leftarrow V_1 \% V_2$
	$V_1 \leftarrow V_4$
	v₅ ← loop
	goto V ₅
done:	$R_1 \leftarrow V_1$
	goto v₀

R₁, R₂: parameters R_{LK}: return address

After register allocation

```
gcd:
loop: R_3 \leftarrow done
if R_2 = 0 goto R_3
R_3 \leftarrow R_2
R_2 \leftarrow R_1 \% R_2
R_1 \leftarrow R_3
R_3 \leftarrow loop
goto R_3
done: goto R_{LK}
```

Allocation: $v_0 \rightarrow R_{LK}$ $v_1 \rightarrow R_1$ $v_2 \rightarrow R_2$ $v_3, v_4, v_5 \rightarrow R_3$

Techniques

We will study two commonly used techniques:

- 1. register allocation by graph coloring, which:
 - produces good results,
 - is relatively slow,
 - is therefore used mostly in batch compilers,
- 2. **linear scan** register allocation, which:
 - produces average results,
 - is very fast,

- is therefore used mostly in JIT compilers. Both are **global**: they allocate registers for a whole function at a time.

Technique #1: graph coloring

Allocation by graph coloring

Register allocation can be reduced to graph coloring:

- 1. build the **interference graph**, which has:
 - one node per register real or virtual,
 - one edge between each pair of nodes whose registers are live at the same time.
- 2. color the interference graph with at most K colors (K = number of available registers), so that all nodes have a different color than all their neighbors.

Problems:

- coloring is NP-complete for arbitrary graphs,
- a K-coloring might not even exist.

Program

gcd: $v_0 \leftarrow R_{LK}$ $V_1 \leftarrow R_1$ $v_2 \leftarrow R_2$ loop: $v_3 \leftarrow done$ if $v_2=0$ goto v_3 $V_4 \leftarrow V_2$ $V_2 \leftarrow V_1 \% V_2$ $V_1 \leftarrow V_4$ $v_5 \leftarrow loop$ goto v_5 done: $R_1 \leftarrow V_1$ goto v_0

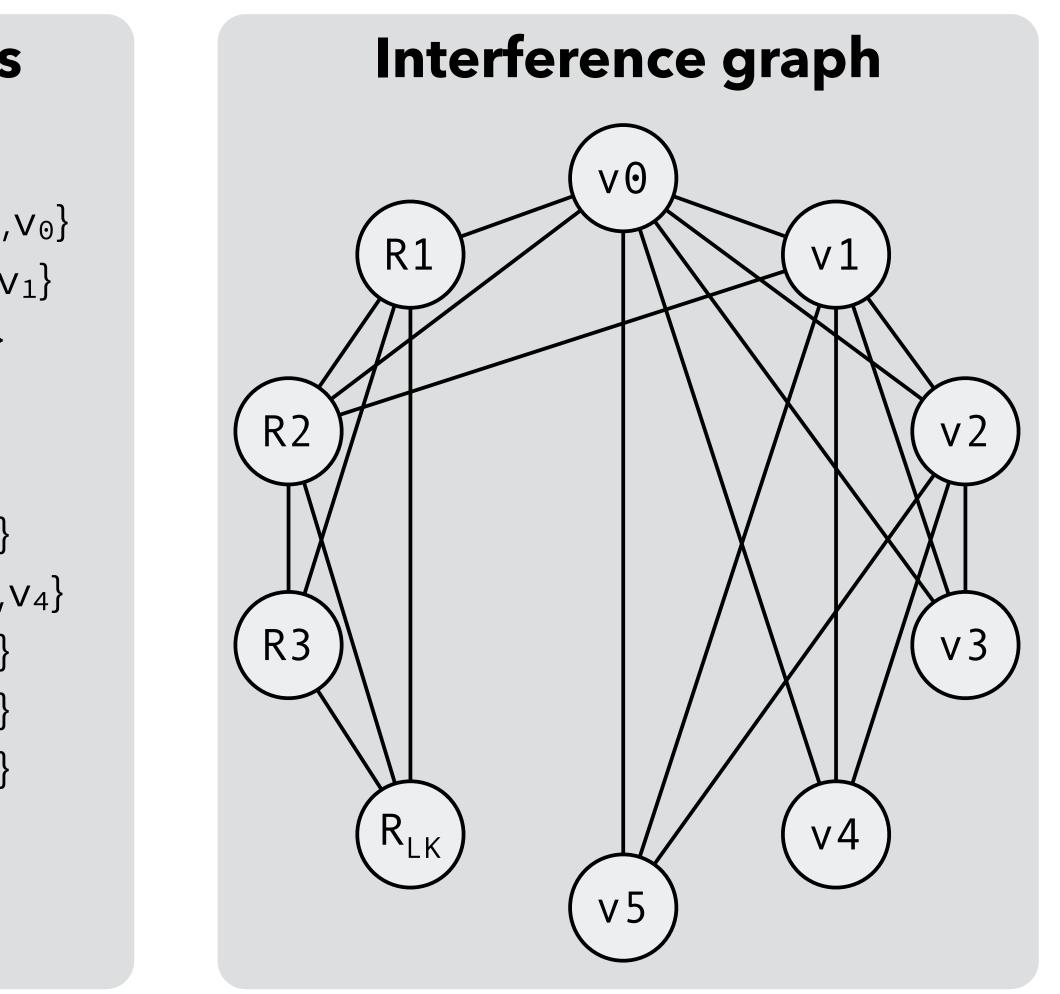
Liveness {in}{out}

 ${R_1, R_2, R_{LK}}{R_1, R_2, v_0}$ $\{R_1, R_2, V_0\}\{R_2, V_0, V_1\}$ $\{R_2, V_0, V_1\}\{V_0 - V_2\}$

```
\{v_0 - v_2\}\{v_0 - v_3\}
\{v_0 - v_3\}\{v_0 - v_2\}
\{v_0 - v_2\}\{v_0 - v_2, v_4\}
\{v_0 - v_2, v_4\}\{v_0 - v_2, v_4\}
\{v_0 - v_2, v_4\}\{v_0 - v_2\}
\{v_0-v_2\}\{v_0-v_2,v_5\}
\{v_0 - v_2, v_5\}\{v_0 - v_2\}
```

 $\{v_0, v_1\}\{R_1, v_0\}$ $\{R_1, v_0\}\{R_1\}$

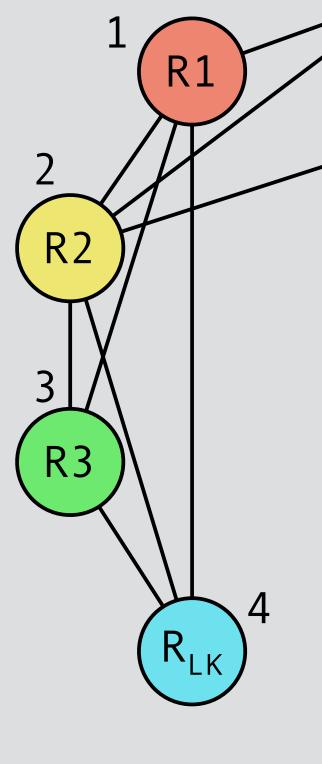
Interference graph example



Original prog.

gcd: $v_{0} \leftarrow R_{LK}$ $V_1 \leftarrow R_1$ $v_2 \leftarrow R_2$ loop: v₃ ← done if $v_2=0$ goto v_3 $V_4 \leftarrow V_2$ $V_2 \leftarrow V_1 \% V_2$ $V_1 \leftarrow V_4$ $v_5 \leftarrow loop$ goto V₅ done: $R_1 \leftarrow V_1$ goto v_0

Colored interference graph v0**R1** v1**R**2 v 3 v4³ 4 R_{LK} v 5



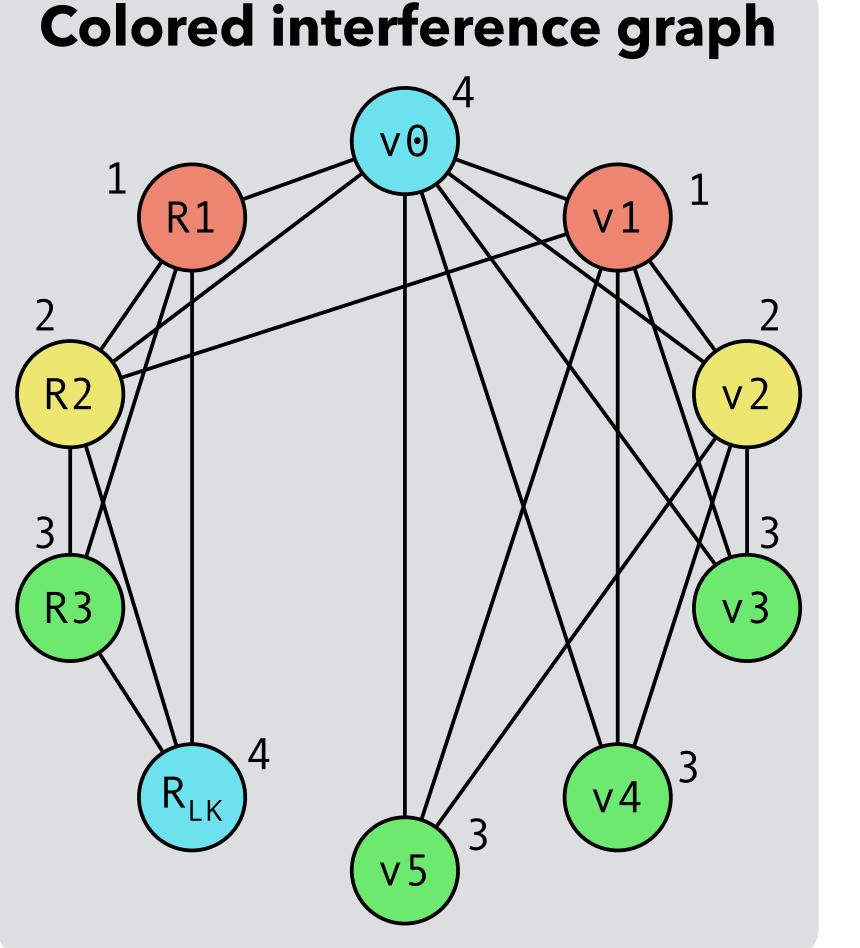
Rewritten

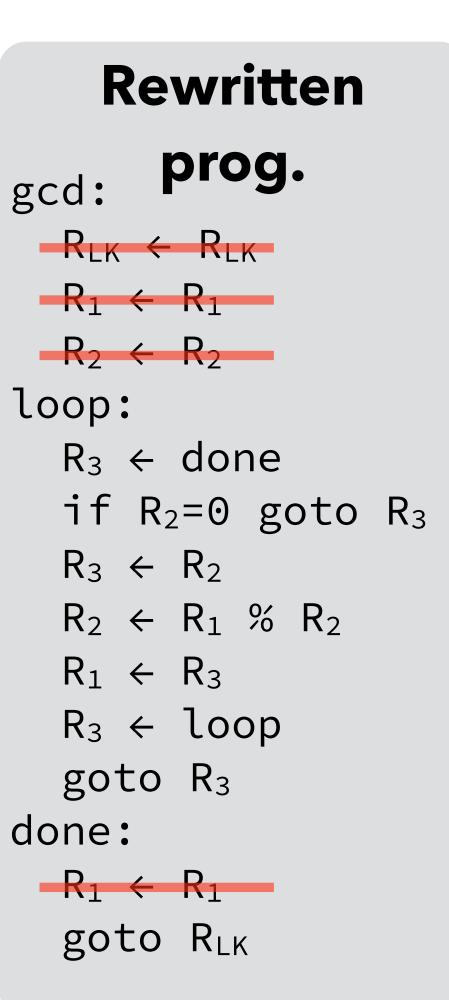
gcd: prog.

 $R_{LK} \leftarrow R_{LK}$ $R_1 \leftarrow R_1$ $R_2 \leftarrow R_2$ loop: $R_3 \leftarrow done$ if $R_2=0$ goto R_3 $R_3 \leftarrow R_2$ $R_2 \leftarrow R_1 \% R_2$ $R_1 \leftarrow R_3$ $R_3 \leftarrow loop$ goto R_3 done: $R_1 \leftarrow R_1$ goto R_{LK}

Original prog.

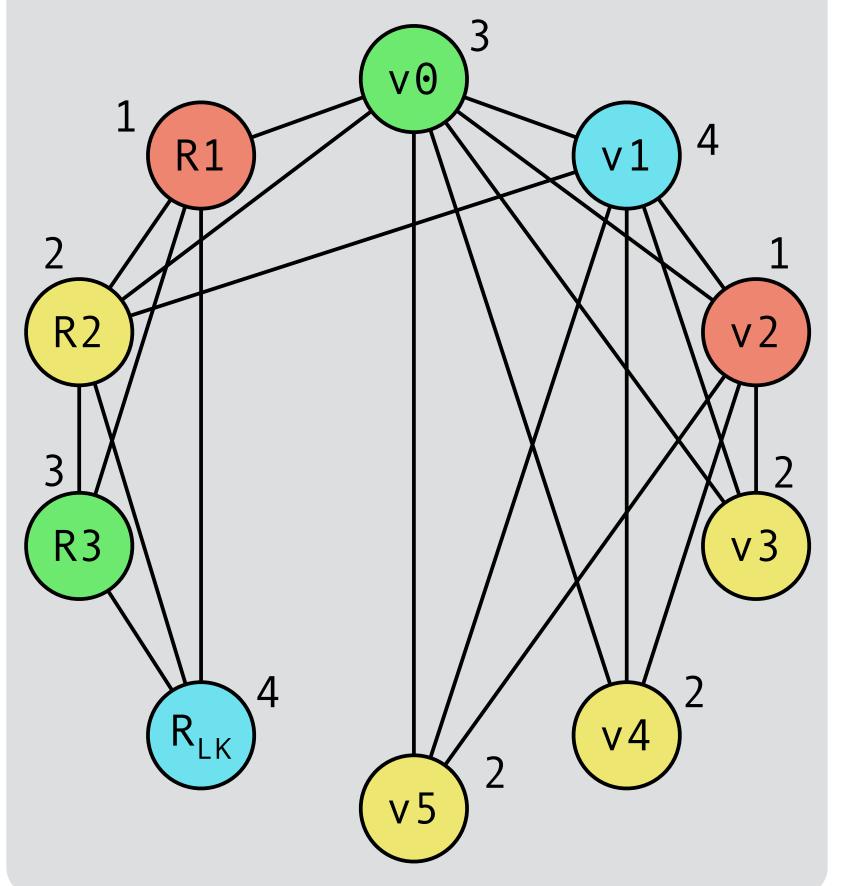
gcd: $v_0 \leftarrow R_{LK}$ $V_1 \leftarrow R_1$ $v_2 \leftarrow R_2$ loop: $v_3 \leftarrow done$ if $v_2=0$ goto v_3 $V_4 \leftarrow V_2$ $V_2 \leftarrow V_1 \% V_2$ $V_1 \leftarrow V_4$ $v_5 \leftarrow loop$ goto V₅ done: $R_1 \leftarrow V_1$ goto v_0





Original prog.

gcd: $v_0 \leftarrow R_{LK}$ $V_1 \leftarrow R_1$ $v_2 \leftarrow R_2$ loop: $v_3 \leftarrow done$ if $v_2=0$ goto v_3 $V_4 \leftarrow V_2$ $V_2 \leftarrow V_1 \% V_2$ $V_1 \leftarrow V_4$ $v_5 \leftarrow loop$ goto V₅ done: $R_1 \leftarrow V_1$ goto v_0



Coloring example (2)

Colored interference graph

Rewritten

gcd: prog. $R_3 \leftarrow R_{LK}$ $R_{LK} \leftarrow R_1$ $R_1 \leftarrow R_2$ loop: $R_2 \leftarrow done$ if $R_1=0$ goto R_2 $R_2 \leftarrow R_1$ $R_1 \leftarrow R_{LK} \% R_1$ $R_{LK} \leftarrow R_2$ $R_2 \leftarrow loop$ goto R₂ done: $R_1 \leftarrow R_{LK}$ goto R_3

This second coloring is also correct, but produces worse code!

colors:

- 1. find a node n with less than K neighbors,
- 2. remove it from the graph,
- 3. recursively color the simplified graph,

4. color n with any color not used by its neighbors.

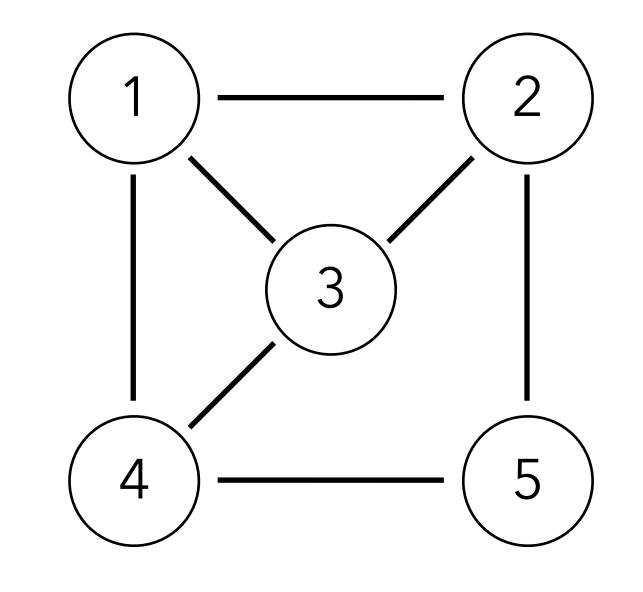
What if there is no node with less than K neighbors?

- a K-coloring might not exist,

- but simplification is attempted nevertheless.

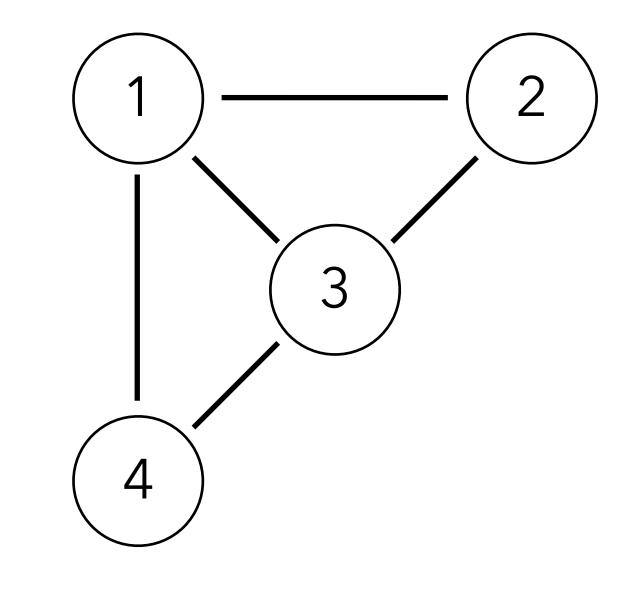
Coloring by simplification is a heuristic technique to color a graph with K

Number of available colors (K): 3



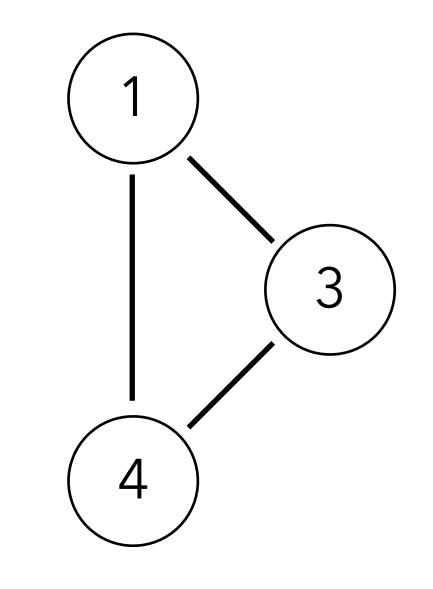
Stack of removed nodes:

Number of available colors (K): 3



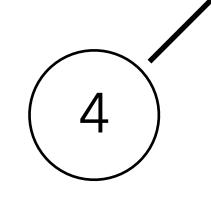
Stack of removed nodes: 5

Number of available colors (K): 3

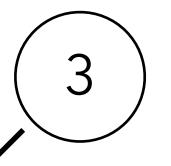


Stack of removed nodes: 5 2

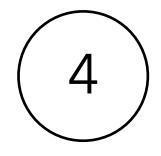
Number of available colors (K): 3



Stack of removed nodes: 5 2 1



Number of available colors (K): 3

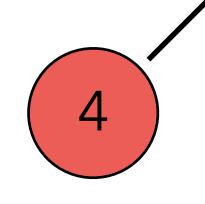


Stack of removed nodes: 5 2 1 3

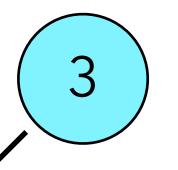
Number of available colors (K): 3

Stack of removed nodes: 5 2 1 3

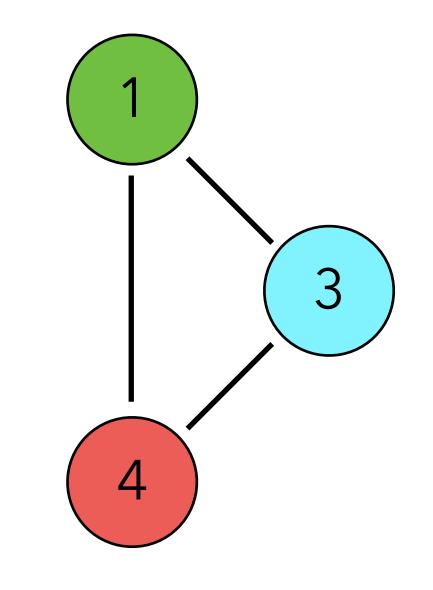
Number of available colors (K): 3



Stack of removed nodes: 5 2 1

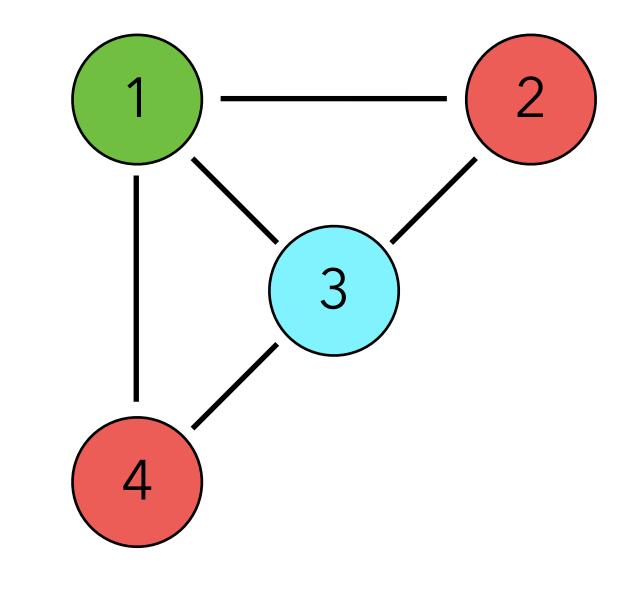


Number of available colors (K): 3



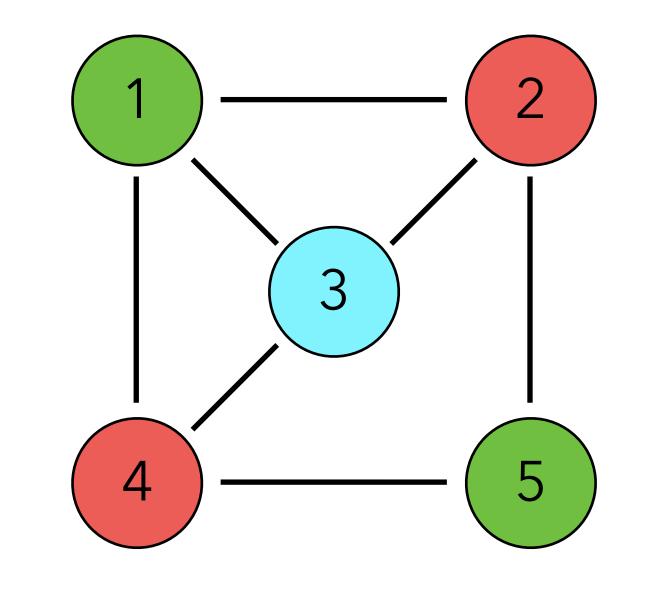
Stack of removed nodes: 5 2

Number of available colors (K): 3

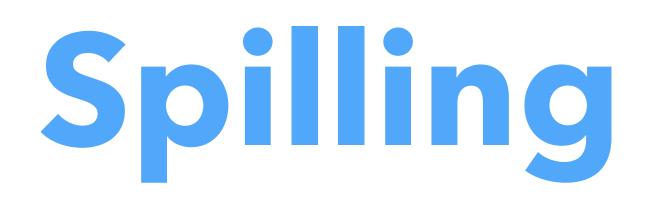


Stack of removed nodes: 5

Number of available colors (K): 3



Stack of removed nodes:



(Optimistic) spilling

What if all nodes have K or more neighbors during simplification? of in a register:

- remove its node from the graph (assuming no interference between spilled value and other values),
- recursively color the simplified graph as usual.

Once recursive coloring is done, two cases:

- 1. by chance, the neighbors of n do not use all the possible colors, n is not spilled,
- 2. otherwise, n is really spilled.

A node n must be chosen to be **spilled** and its value stored in memory instead

Spill costs

Which node should be spilled? Ideally one: - whose value is not frequently used, and/or - that interferes with many other nodes. For that, compute the spill cost of a node n as: $cost(n) = (rw_0(n) + 10 rw_1(n) + ... + 10^k rw_k(n)) / degree(n)$ where:

 $-rw_i(n)$ is the number of times the value of n is read or written in a loop of depth i,

Then spill the node with lowest cost.

- degree(n) is the number of edges adjacent to n in the interference graph.

Spilling of pre-colored nodes

The interference graph contains noc of the machine:

- they are said to be **pre-colored**, as their color is given by the machine register they represent,
- they should never be simplified, as they cannot be spilled (they are physical registers!).

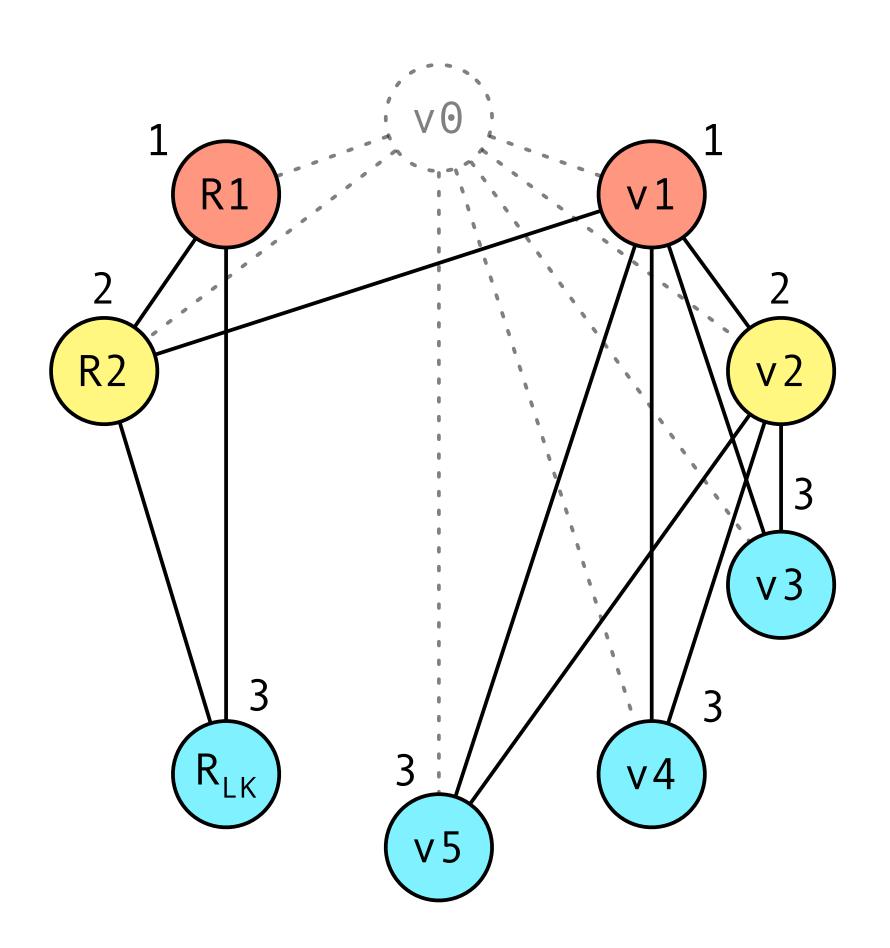
The interference graph contains nodes corresponding to the physical registers

Spilling example: costs

gcd: $v_{0} \leftarrow R_{LK}$ $V_1 \leftarrow R_1$ $v_2 \leftarrow R_2$ loop: $v_3 \leftarrow done$ if $v_2=0$ goto v_3 $V_4 \leftarrow V_2$ $V_2 \leftarrow V_1 \% V_2$ $V_1 \leftarrow V_4$ $v_5 \leftarrow loop$ goto v_5 done: $R_1 \leftarrow V_1$ goto v_0

node	rw ₀	rw ₁	deg.	cost
Vo	2	0	7	0,29
V1	2	2	6	3,67
V2	1	4	6	6,83
V3	0	2	3	6,67
V4	0	2	3	6,67
V5	0	2	3	6,67

 $cost = (rw_0 + 10 rw_1) / degree$



Consequences of spilling

After spilling, rewrite the program to: - insert code just before the spilled value is read, to fetch it from memory, - insert code just after the spilled value is written, to write it back to memory. But: spilling code introduces new virtual registers, so register allocation must

be redone!

In practice, 1–2 iterations are enough in almost all cases.

Spilling code integration

Original program

gcd: $v_{0} \leftarrow R_{LK}$ $V_1 \leftarrow R_1$ $v_2 \leftarrow R_2$ loop: $v_3 \leftarrow done$ if $v_2 = 0$ goto v_3 $V_4 \leftarrow V_2$ $V_2 \leftarrow V_1 \% V_2$ $V_1 \leftarrow V_4$ V₅ ← loop goto V₅ done: $R_1 \leftarrow V_1$ goto v₀

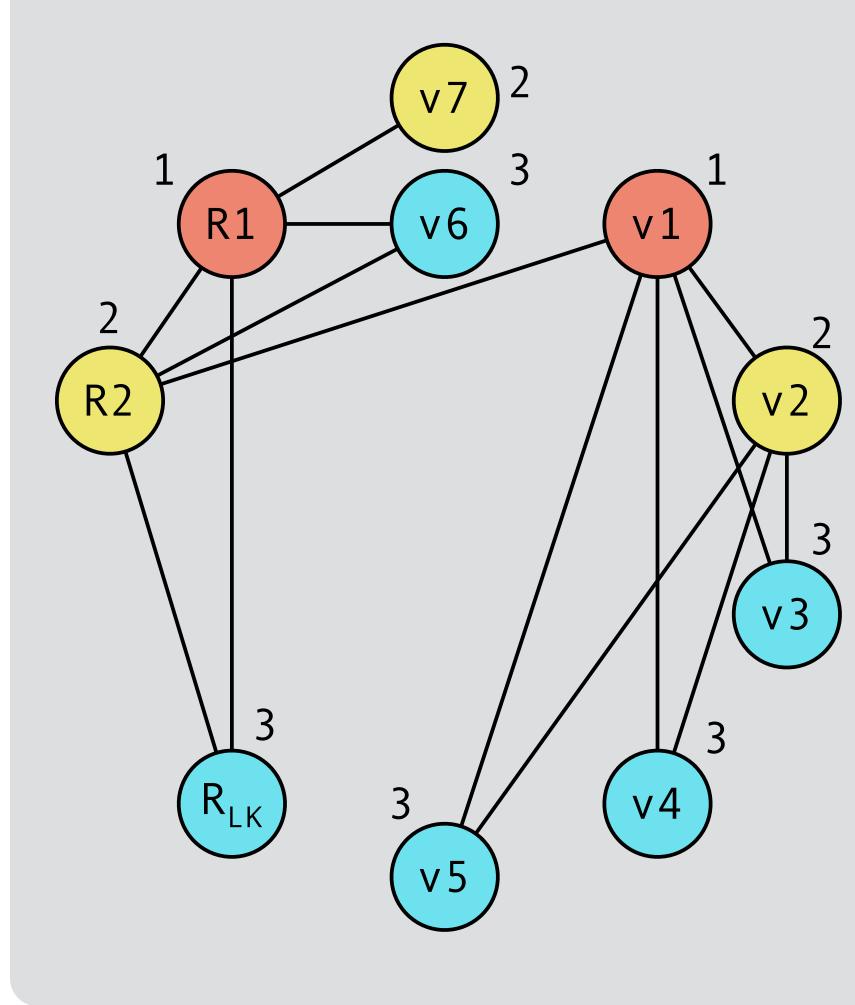
Rewritten program

spilling of v₀

gcd:
$v_6 \leftarrow R_{LK}$
push v ₆
$v_1 \leftarrow R_1$
$v_2 \leftarrow R_2$
loop:
v₃ ← done
if $v_2 = 0$ goto v_3
$V_4 \leftarrow V_2$
$V_2 \leftarrow V_1 \% V_2$
$V_1 \leftarrow V_4$
v₅ ← loop
goto v_5
done:
$R_1 \leftarrow V_1$
pop v7
goto v7

New interference graph

Interference graph w/ spilling

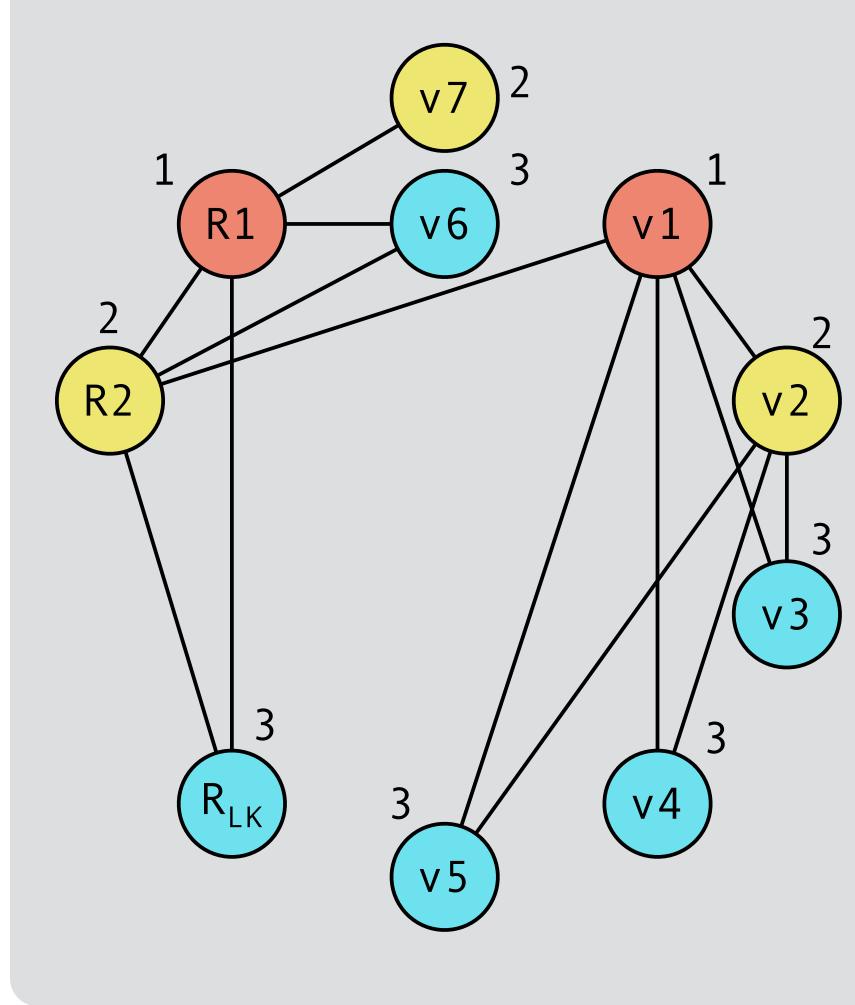


Final program

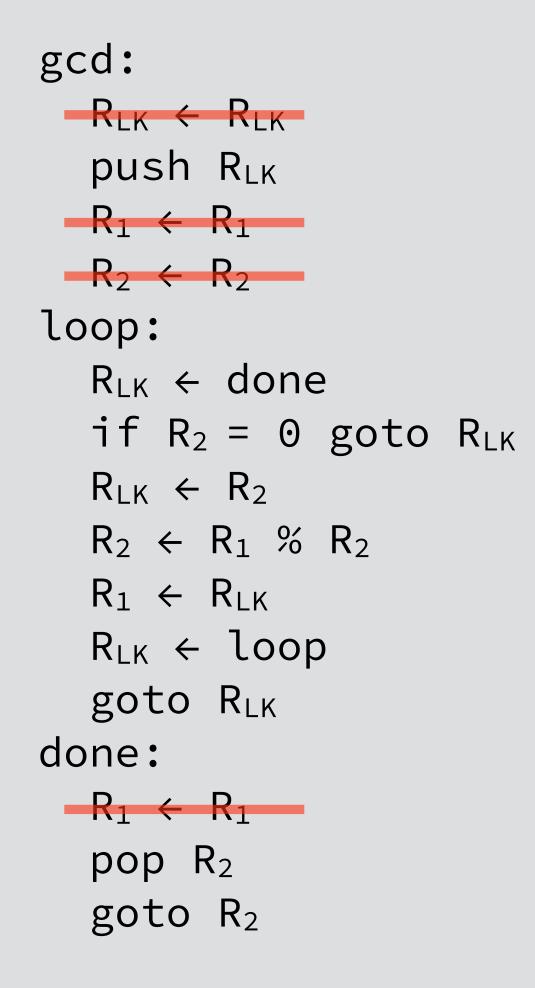
gcd: $R_{LK} \leftarrow R_{LK}$ push R_{LK} $R_1 \leftarrow R_1$ $R_2 \leftarrow R_2$ loop: R_{LK} ← done if $R_2 = 0$ goto R_{LK} $R_{LK} \leftarrow R_2$ $\mathsf{R}_2 \ \leftarrow \ \mathsf{R}_1 \ \% \ \mathsf{R}_2$ $R_1 \leftarrow R_{LK}$ R_{LK} ← loop goto R_{LK} done: $R_1 \leftarrow R_1$ pop R_2 goto R_2

New interference graph

Interference graph w/ spilling



Final program



Coloring quality

one can lead to a much shorter program than the other. Why? Because "move" instruction of the form

 $V_1 \leftarrow V_2$

holds when v_1 or v_2 is a real register). Goal: make this happen as often as possible.

- Two valid K-colorings of an interference graph are not necessarily equivalent:
- can be removed if v_1 and v_2 end up being allocated to the same register (also

If v_1 and v_2 do not interfere, a move instruction of the form $V_1 \leftarrow V_2$ coalesce into a single node.

- can always be removed by replacing v_1 and v_2 by a new virtual register $v_{1\&2}$. This is called **coalescing**, as the nodes of v_1 and v_2 in the interference graph

Coalescing is not always a good idea! Might turn a graph that is K-colorable into one that isn't, which implies spilling. Therefore: use conservative heuristics.

Coalescing issue

Coalescing heuristics

Briggs: coalesce nodes n_1 and n_2 to $n_{1\&2}$ iff: or equal to K),

George: coalesce nodes n_1 and n_2 to $n_{1\&2}$ iff all neighbors of n_1 either:

- already interfere with n₂, or
- are of insignificant degree.

Both heuristics are:

- safe: won't make a K-colorable graph uncolorable,
- conservative: might prevent a safe coalescing.

- $n_{1\&2}$ has less than K neighbors of significant degree (i.e. of a degree greater

Heuristic #1: Briggs

Briggs: coalesce nodes n_1 and n_2 to $n_{1\&2}$ iff: Rationale:

- during simplification, all the neighbors of $n_{1\&2}$ that are of insignificant degree will be simplified;
- once they are, n_{1&2} will have less than K neighbors and will therefore be simplifiable too.

- $n_{1\&2}$ has less than K neighbors of significant degree (i.e. of a degree $\geq K$),

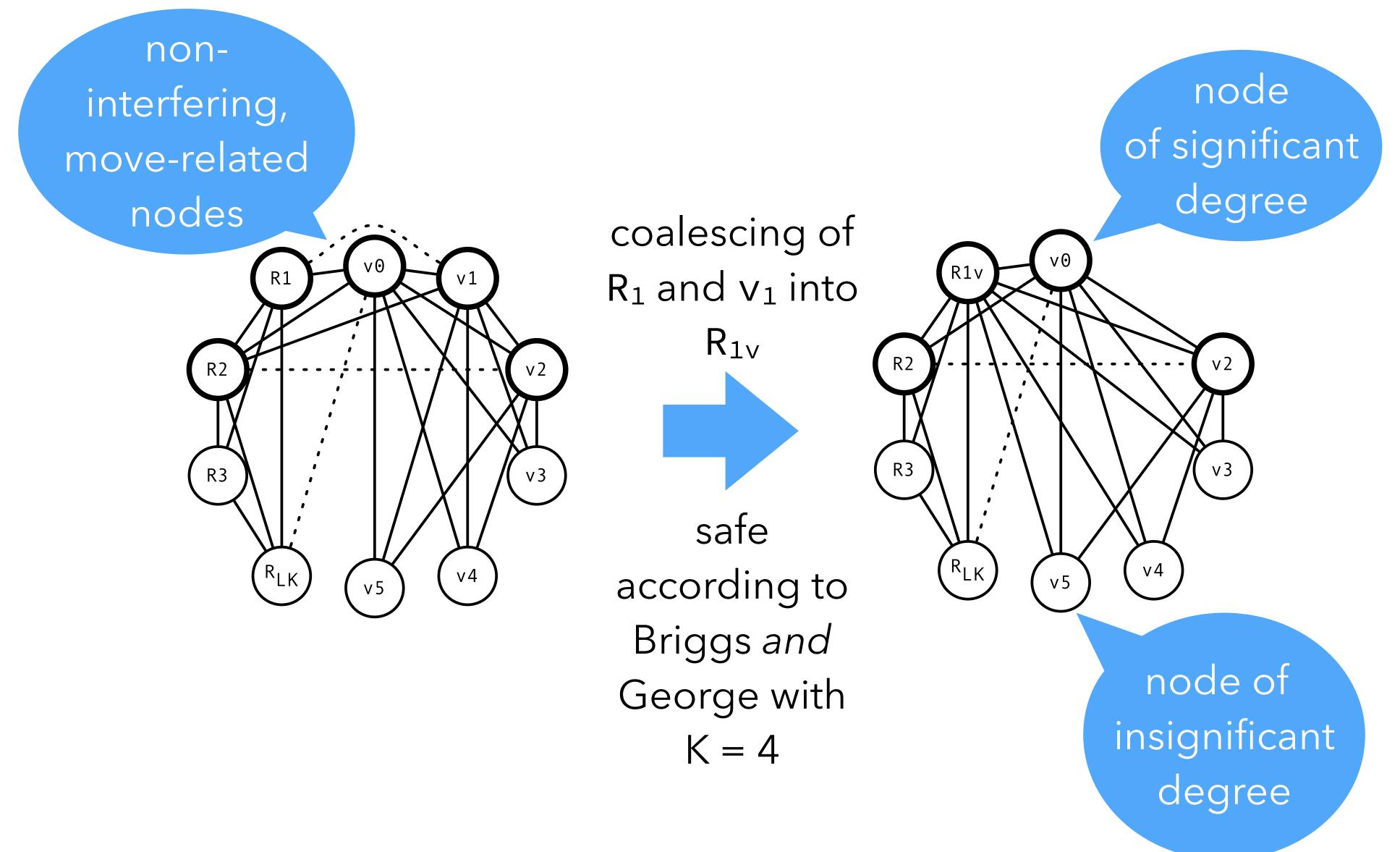
George: coalesce nodes n_1 and n_2 to $n_{1\&2}$ iff all neighbors of n_1 either:

- already interfere with n₂, or
- are of insignificant degree.

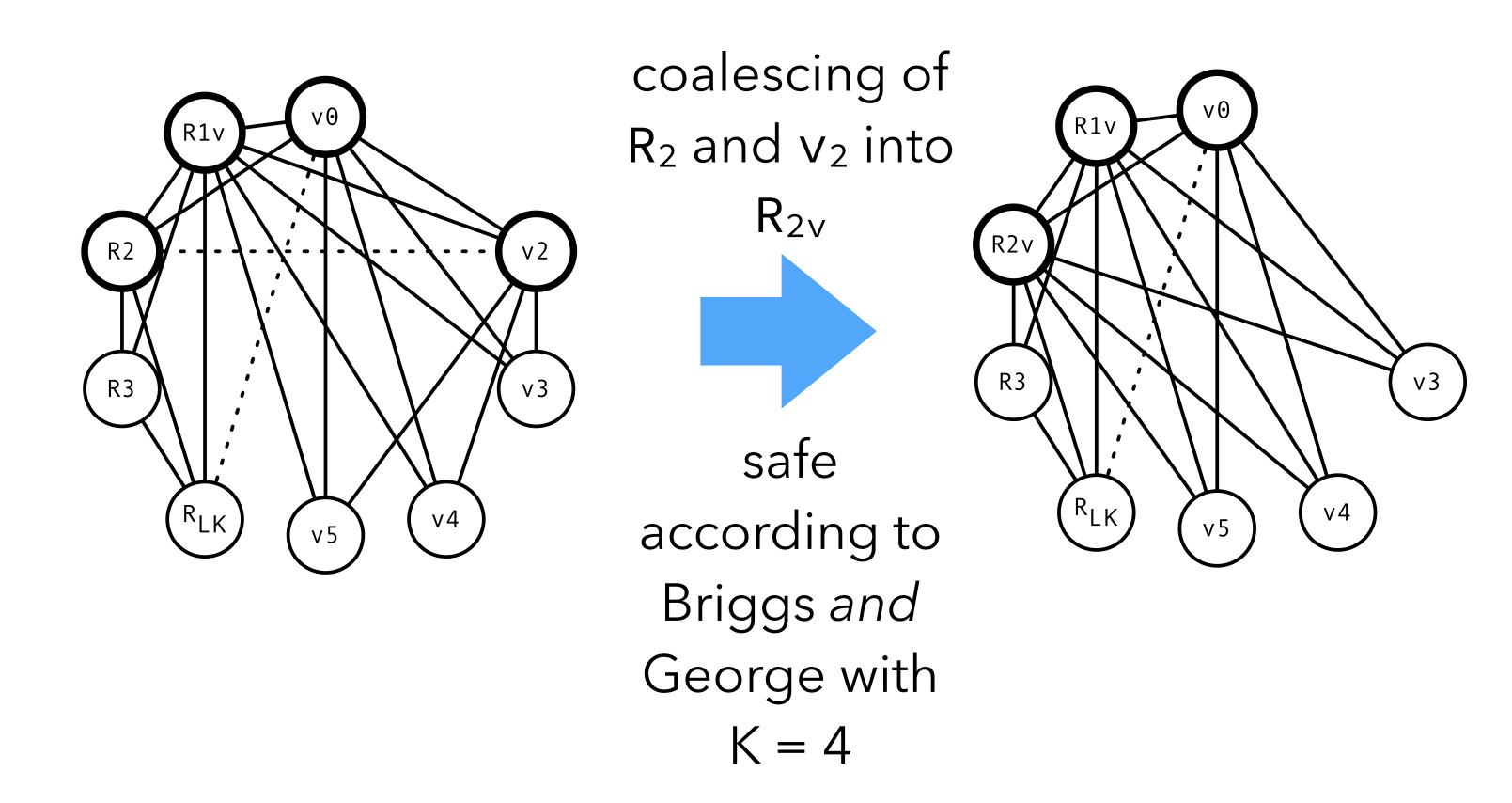
Rationale:

- the neighbors of $n_{1\&2}$ will be:
 - 1. those of n_2 , and
 - 2. the neighbors of n_1 of insignificant degree,
- the latter ones will all be simplified,
- once they are, the graph will be a sub-graph of the original one.

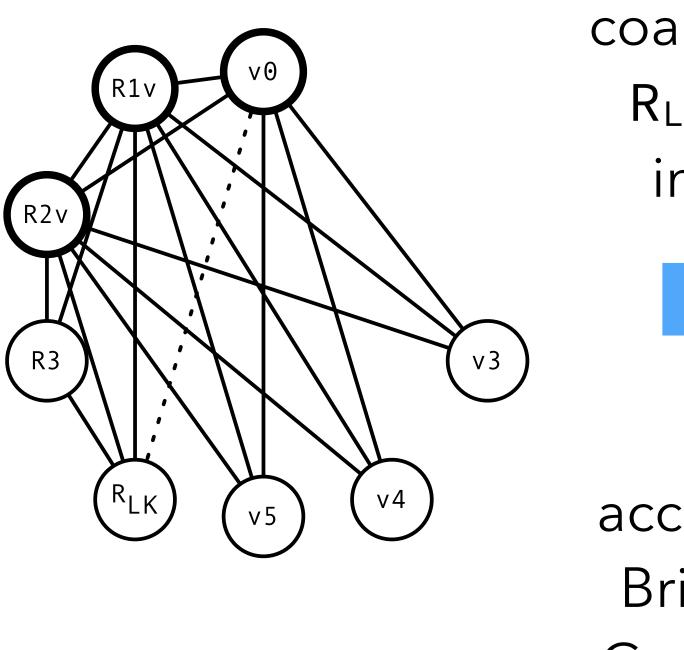
Coalescing example



Coalescing example (2)

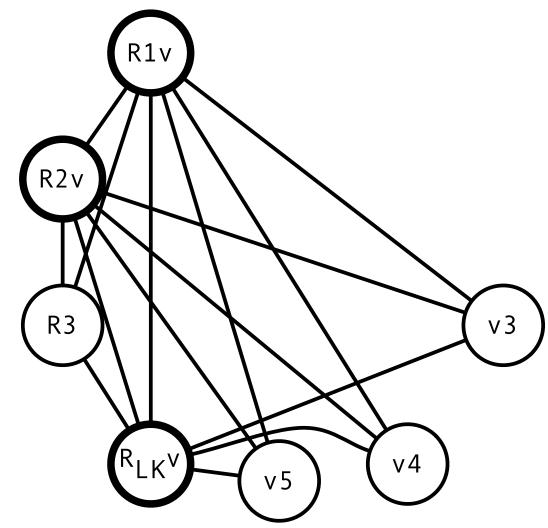


Coalescing example (3)

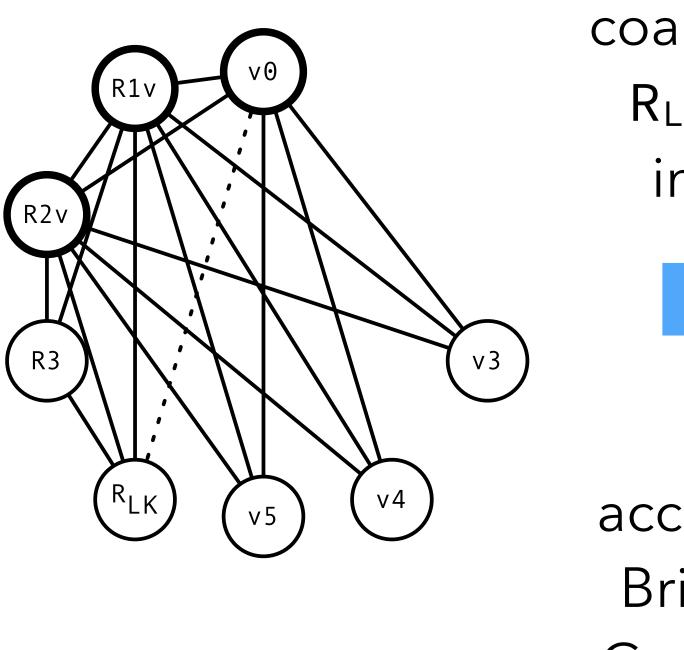


coalescing of R_{LK} and v_0 into R_{LKv}

safe according to Briggs and George with K = 4

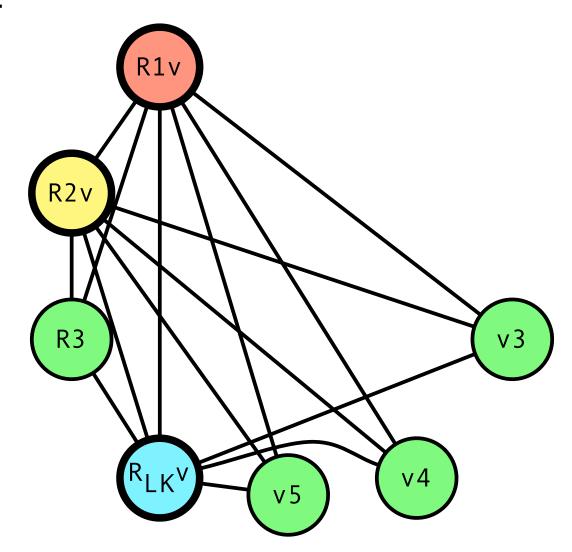


Coalescing example (3)



coalescing of R_{LK} and v₀ into R_{LKv}

safe according to Briggs and George with K = 4



Putting it all together

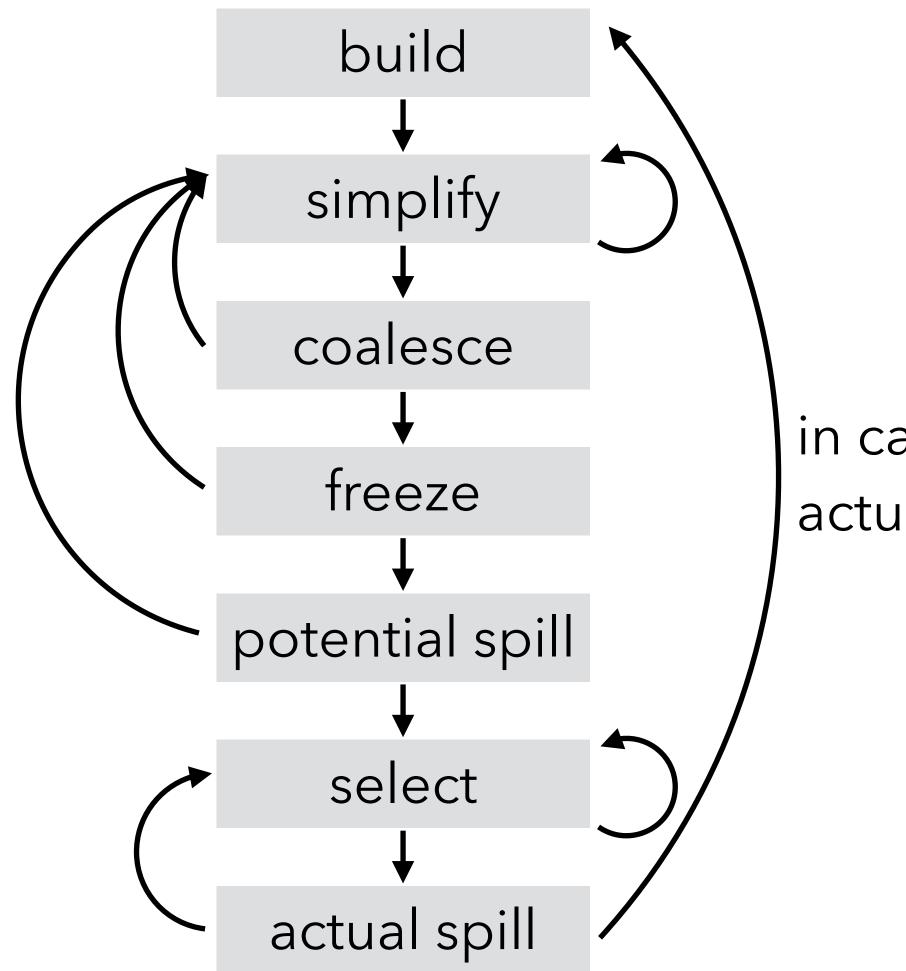
Iterated register coalescing

Simplification and coalescing should **coalescing**:

- 1. Interference graph nodes are partitioned in two classes: move-related or not.
- 2. Simplification is done on *not* move-related nodes (as move-related ones could be coalesced).
- 3. Conservative coalescing is performed.
- 4. When neither simplification nor coalescing can proceed further, some move-related nodes are **frozen** (marked as non-move-related).
- 5. The process is restarted at 2.

Simplification and coalescing should be interleaved to get **iterated register**

Iterated register coalescing



in case of actual spill

Assignment constraints

Assignment constraints

Current assumption: a virtual register can be assigned to any free physical register.

Not always true because of **assignment constraints** due to:

- registers classes (e.g. integer vs. floating-point registers),
- instructions with arguments or result in specific registers,
- calling conventions.

A realistic register allocator has to be able to satisfy these constraints.

loating-point registers), sult in specific registers,

Most architectures have several register classes:

- integer vs floating-point,
- address vs data,
- etc.

To take them into account in a coloring-based allocator: introduce artificial interferences between a node and all pre-colored nodes corresponding to registers to which it *cannot* be allocated.

Calling conventions

- How to deal with the fact that calling conventions pass arguments in specific registers?
- At function entry, copy arguments to new virtual regs: fact:
- $v_1 \leftarrow R_1$; copy first argument to v_1 Before a call, load arguments in appropriate registers: $R_1 \leftarrow V_2$; load first argument from V_2 CALL fact

Whenever possible, these instructions will be removed by coalescing.

Caller/callee-saved registers

- Calling conventions distinguish two kinds of registers:
 - caller-saved: saved by the caller before a call and restored after it,
 - callee-saved: saved by the callee at function entry and restored before function exit.
- Ideally:
 - callee-saved registers,
- other virtual registers should be assigned to caller-saved registers. How can this be obtained in a coloring-based allocator?

- virtual registers having to survive at least one call should be assigned to

Caller/callee-saved registers

- Caller-saved registers do not survive a function call. To model this:
- Add interference edges between all virtual registers live across at least one call and (physical) caller-saved registers. Consequence:
- Virtual registers live across at least one call won't be assigned to caller-saved registers.
- Therefore:
- They will either be allocated to callee-saved registers, or spilled!

Saving callee-saved registers

Callee-saved registers must be preserved by all functions, so:

- copy them to fresh temporary registers at function entry,
- restore them before exit.

Saving callee-saved registers

For example, if R₈ is callee-saved: entry:

If register pressure is low:

- R_8 and v_1 will be coalesced, and
- the two move instructions will be removed.

If register pressure is high:

- v_1 will be spilled, making R_8 available in the function (e.g. to store a virtual register live across a call).

Technique #2: linear scan

The basic linear scan technique is very simple:

- the program is linearized i.e. represented as a linear sequence of instructions, not as a graph,
- a unique live range is computed for every variable, going from the first to the last instruction during which it is live,
- registers are allocated by iterating over the intervals sorted by increasing starting point: each time an interval starts, the next free register is allocated to it, and each time an interval ends, its register is freed,
- if no register is available, the active range ending last is chosen to have its variable spilled.

Linear scan

Linear scan example

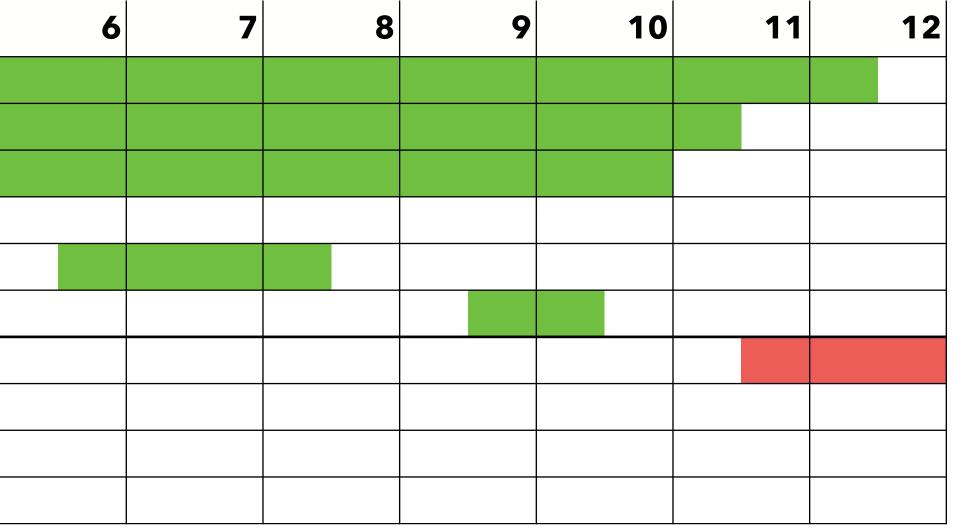
Linearized version of GCD computation:

Program								
1	gcd:	v₀ ← R _{LK}						
2		$v_1 \leftarrow R_1$						
3		$v_2 \leftarrow R_2$						
4	loop:	v₃ ← done						
5		if $v_2=0$ goto v_3						
6		$V_4 \leftarrow V_2$						
7		$V_2 \leftarrow V_1 \% V_2$						
8		$V_1 \leftarrow V_4$						
9		v₅ ← loop						
10		goto v ₅						
11	done:	$R_1 \leftarrow V_1$						
12		goto v₀						

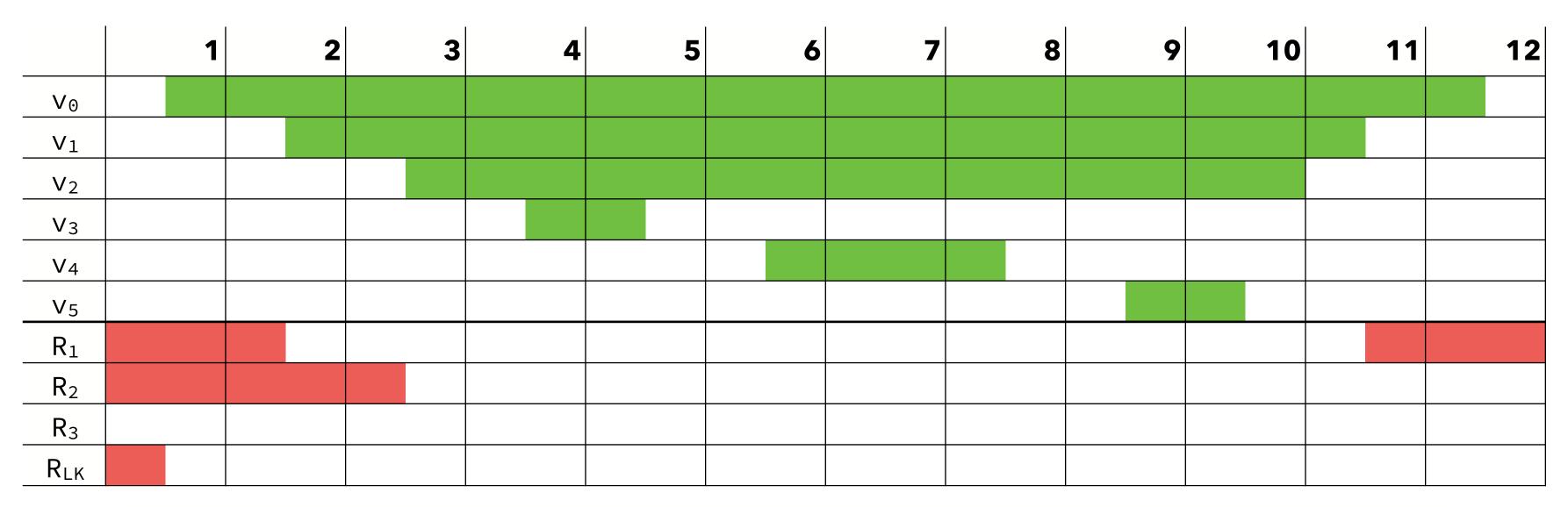
Live ranges v₀: [1+,12-] v₁: [2+,11-] v₂: [3+,10+] v₃: [4+,5-] V4: [6+,8-] v₅: [9+,10-] Notation: *i*⁺ entry of instr. i *i*- exit of instr. i

	1	2	3	4	5	
Vo						
V_1						
V ₂						
V3						
V4						
V5						
R_1						
R ₂						
R ₃						
R _{LK}						

Linear scan example (4 r.)



allocation

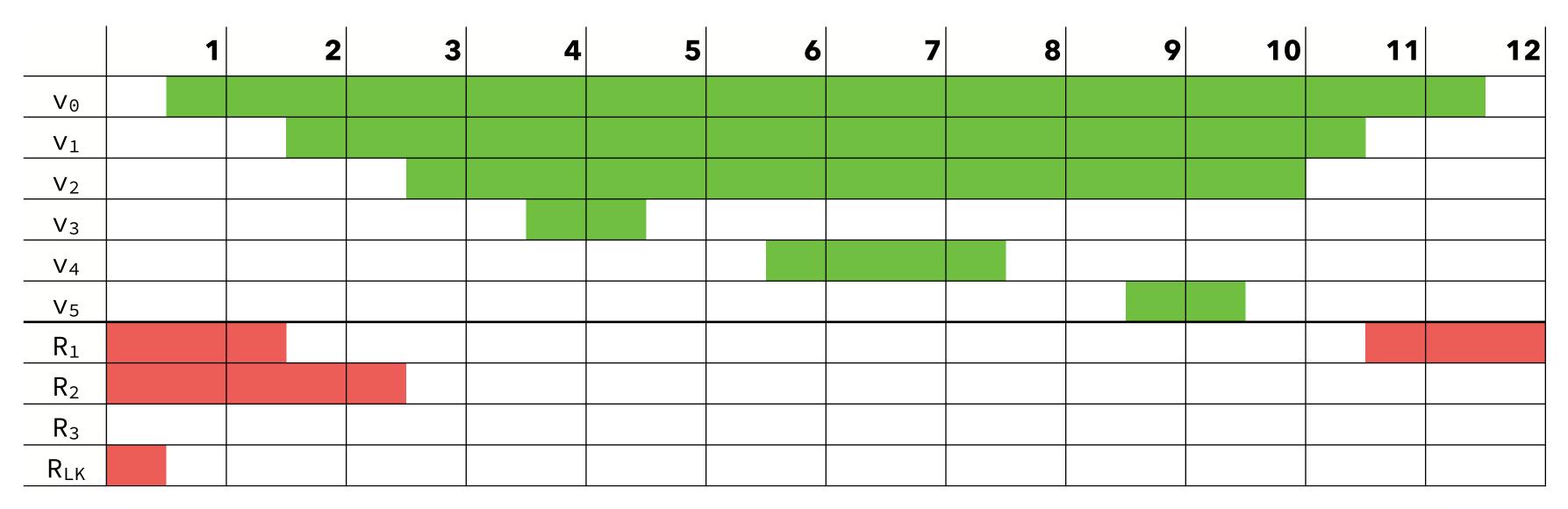


1+ [1+,12-]

Linear scan example (4 r.)

allocation

v₀→R₃

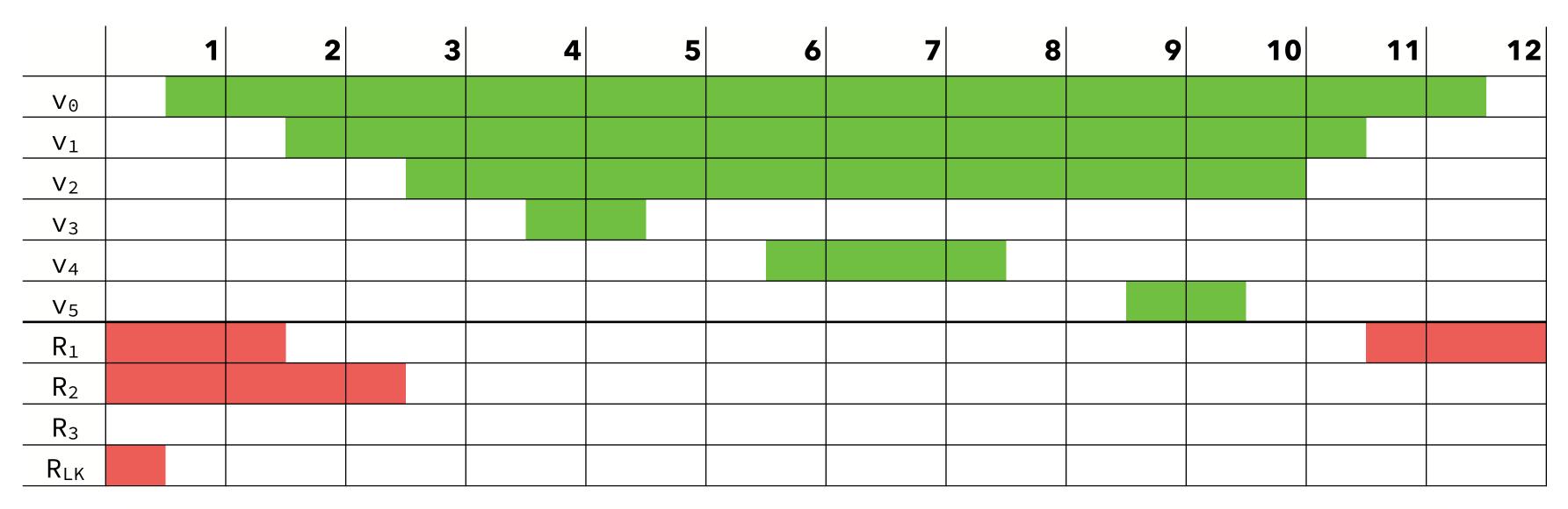


Linear scan example (4 r.)

allocation

v₀→R₃

 $v_0 \rightarrow R_3, v_1 \rightarrow R_1$



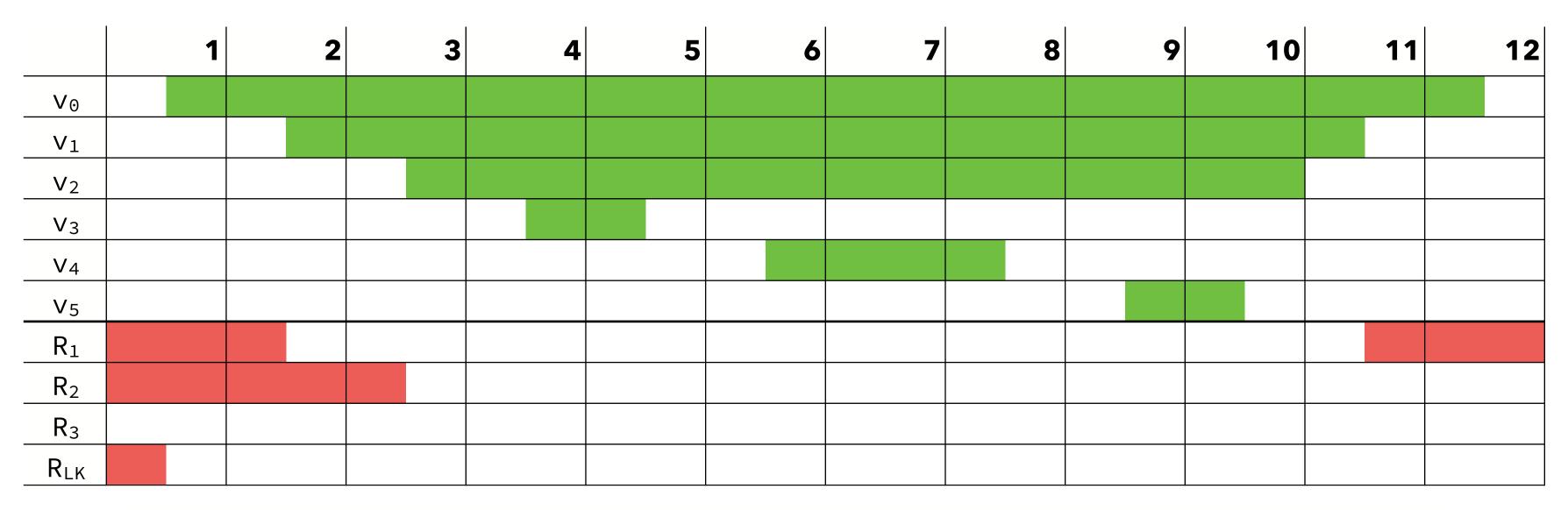
Linear scan example (4 r.)

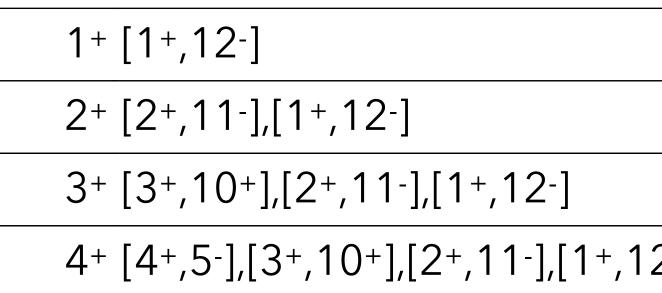
allocation

v₀→R₃

 $v_0 \rightarrow R_3, v_1 \rightarrow R_1$

 $v_0 \rightarrow R_3, v_1 \rightarrow R_1, v_2 \rightarrow R_2$





Linear scan example (4 r.)

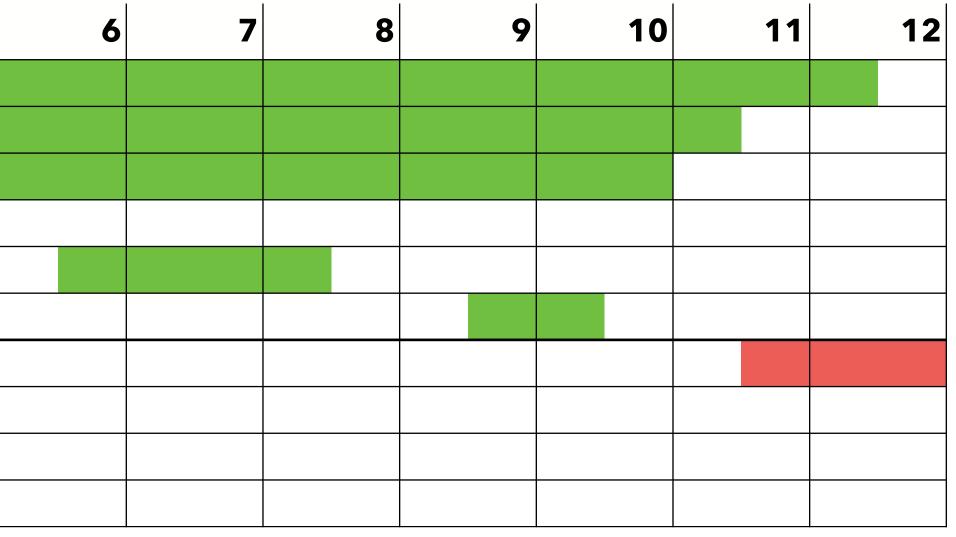
allocation

	v₀→R ₃
	$v_0 \rightarrow R_3, v_1 \rightarrow R_1$
	$v_0 \rightarrow R_3, v_1 \rightarrow R_1, v_2 \rightarrow R_2$
2-]	$v_0 \rightarrow R_3, v_1 \rightarrow R_1, v_2 \rightarrow R_2, v_3 \rightarrow R_{LK}$

	1	2	3	4	5
Vo					
V1					
V ₂					
V3					
V4					
V5					
R1					
R_2					
R ₃					
R_{LK}					

1+ [1+,12-]	v₀→R ₃
2+ [2+,11-],[1+,12-]	$v_0 \rightarrow R_3, v_1 \rightarrow R_1$
3+ [3+,10+],[2+,11-],[1+,12-]	$v_0 \rightarrow R_3, v_1 \rightarrow R_1, v_2 \rightarrow R_2$
4+ [4+,5-],[3+,10+],[2+,11-],[1+,12-]	$v_0 \rightarrow R_3, v_1 \rightarrow R_1, v_2 \rightarrow R_2, v_3 \rightarrow R_{LK}$
6+ [6+,8-],[3+,10+],[2+,11-],[1+,12-]	$v_0 \rightarrow R_3, v_1 \rightarrow R_1, v_2 \rightarrow R_2, v_4 \rightarrow R_{LK}$

Linear scan example (4 r.)



allocation

	1	2	3	4	5
Vo					
V1					
V_2					
V3					
V4					
V5					
R_1					
R_2					
R ₃					
R _{LK}					

V4			
V_5			
R_1			
R_2			
R ₃			
R_{LK}			

1+ [1+,12-]

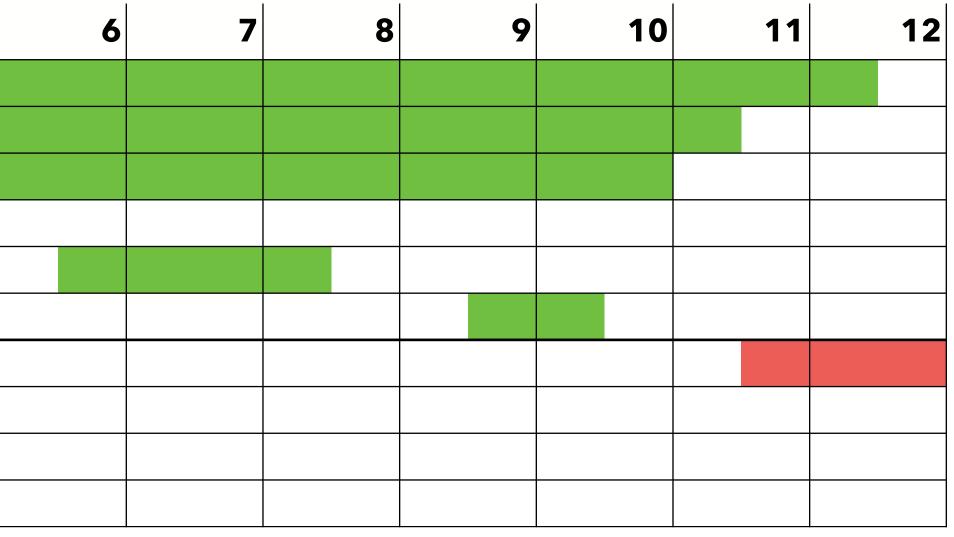
2+ [2+,11-],[1+,12-]

4+ [4+,5-],[3+,10+],[2+,11-],[1+,12

6+ [6+,8-],[3+,10+],[2+,11-],[1+,12

9+ [9+,10-],[3+,10+],[2+,11-],[1+,1

Linear scan example (4 r.)



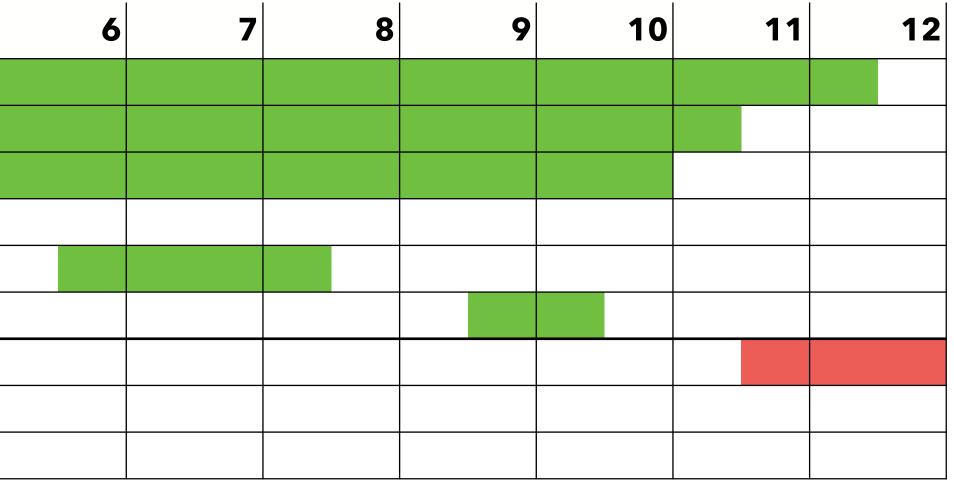
allocation

	v₀→R₃
	$v_0 \rightarrow R_3, v_1 \rightarrow R_1$
	$v_0 \rightarrow R_3, v_1 \rightarrow R_1, v_2 \rightarrow R_2$
2-]	$v_0 \rightarrow R_3, v_1 \rightarrow R_1, v_2 \rightarrow R_2, v_3 \rightarrow R_{LK}$
2-]	$v_0 \rightarrow R_3, v_1 \rightarrow R_1, v_2 \rightarrow R_2, v_4 \rightarrow R_{LK}$
12-]	$v_0 \rightarrow R_3, v_1 \rightarrow R_1, v_2 \rightarrow R_2, v_5 \rightarrow R_{LK}$

Result: no spilling

	1	2	3	4	5	
Vo						
V_1						
V_2						
V3						
V4						
V5						
R1						
R ₂						
RLK						

Linear scan example (3 r.)

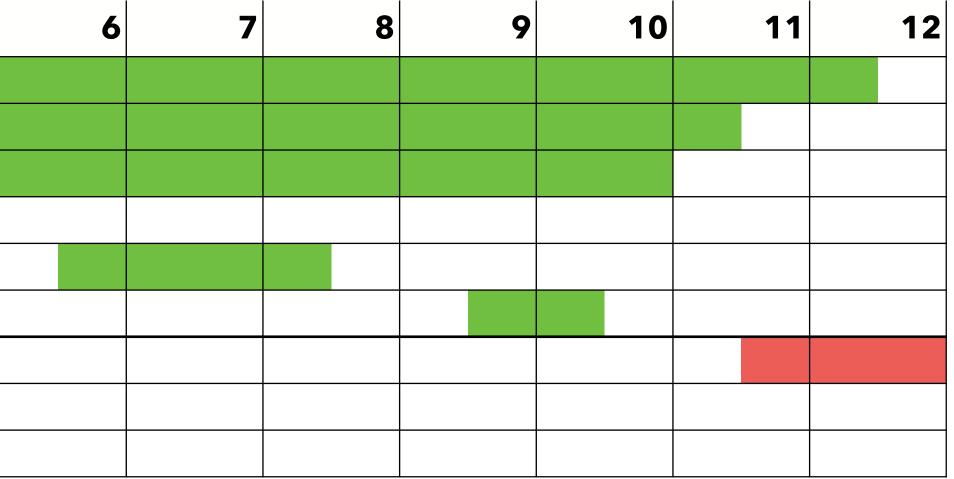


allocation

	1	2	3	4	5	
Vo						
V_1						
V_2						
V3						
V4						
V5						
R1						
R ₂						
R _{LK}						

1+ [1+,12-]

Linear scan example (3 r.)

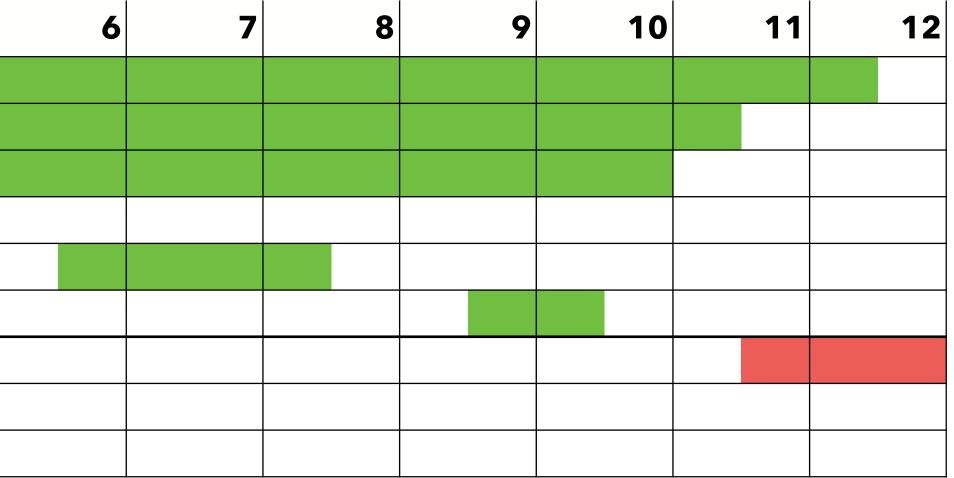


allocation

v₀→R_{LK}

	1	2	3	4	5
Vo					
V_1					
V_2					
V3					
V4					
V5					
R1					
R ₂					
R_{LK}					

Linear scan example (3 r.)



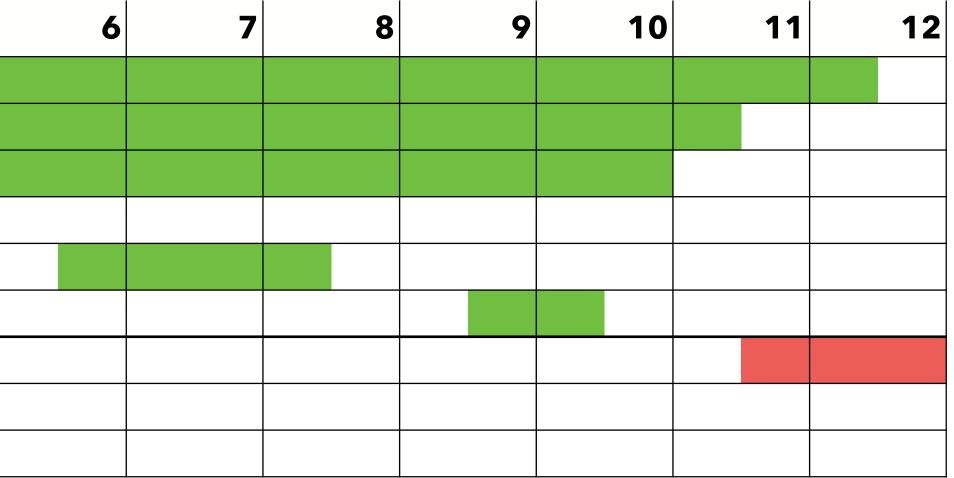
allocation

v₀→R_{LK}

 $v_0 \rightarrow R_{LK}, v_1 \rightarrow R_1$

	1	2	3	4	5	
Vo						
V1						
V2						
V ₃						
V4						
V_5						
R_1						
R_2						
R_{LK}						

Linear scan example (3 r.)



allocation

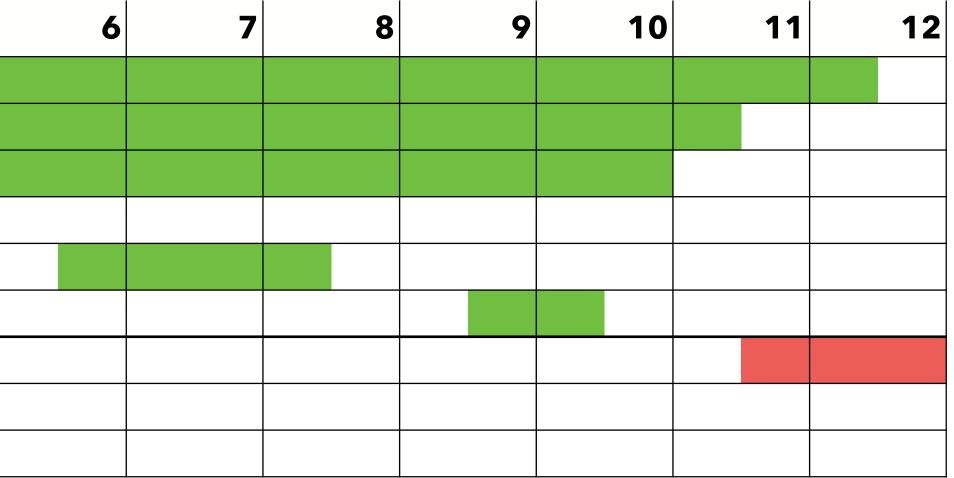
v₀→R_{LK}

 $v_0 \rightarrow R_{LK}, v_1 \rightarrow R_1$

 $v_0 \rightarrow R_{LK}, v_1 \rightarrow R_1, v_2 \rightarrow R_2$

	1	2	3	4	5	
Vo						
V_1						
V2						
V ₃						
V4						
V_5						
R1						
R_2						
R_{LK}						

Linear scan example (3 r.)



allocation

v₀→R_{LK}

 $v_0 \rightarrow R_{LK}, v_1 \rightarrow R_1$

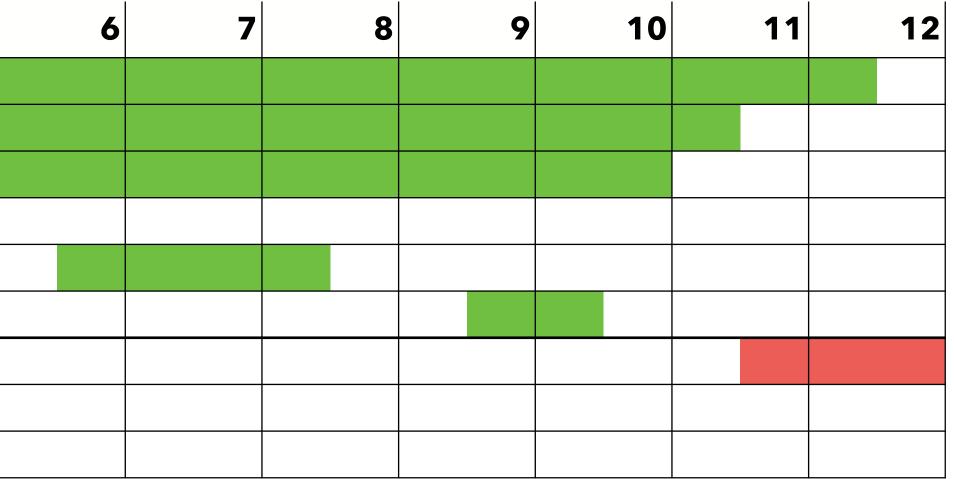
 $v_0 \rightarrow R_{LK}, v_1 \rightarrow R_1, v_2 \rightarrow R_2$

 $v_0 \rightarrow S, v_1 \rightarrow R_1, v_2 \rightarrow R_2, v_3 \rightarrow R_{LK}$

	1	2	3	4	5	
Vo						
V1						
V_2						
V3						
V4						
V5						
R1						
R_2						
R_{LK}						

1+ [1+,12-] 2+ [2+,11-],[1+,12-] 3+ [3+,10+],[2+,11-],[1+,12-] 4+ [4+,5-],[3+,10+],[2+,11-] 6+ [6+,8-],[3+,10+],[2+,11-]

Linear scan example (3 r.)



allocation

V₀→RLK

 $v_0 \rightarrow R_{LK}, v_1 \rightarrow R_1$

 $v_0 \rightarrow R_{LK}, v_1 \rightarrow R_1, v_2 \rightarrow R_2$

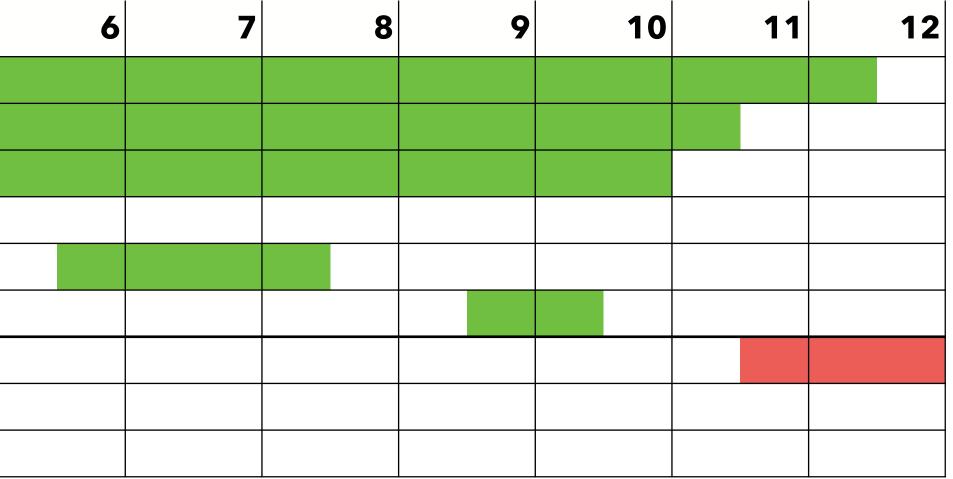
 $v_0 \rightarrow S, v_1 \rightarrow R_1, v_2 \rightarrow R_2, v_3 \rightarrow R_{LK}$

 $\vee_0 \rightarrow S$, $\vee_1 \rightarrow R_1$, $\vee_2 \rightarrow R_2$, $\vee_4 \rightarrow R_{LK}$

	1	2	3	4	5	
Vo						
V_1						
V2						
V ₃						
V4						
V5						
R1						
R ₂						
R_{LK}						

1+ [1+,12-] 2+ [2+,11-],[1+,12-] 3+ [3+,10+],[2+,11-],[1+,12-] 4+ [4+,5-],[3+,10+],[2+,11-] 6+ [6+,8-],[3+,10+],[2+,11-] 9+ [9+,10-],[3+,10+],[2+,11-]

Linear scan example (3 r.)



allocation

V₀→RLĸ

 $v_0 \rightarrow R_{LK}, v_1 \rightarrow R_1$

 $v_0 \rightarrow R_{LK}, v_1 \rightarrow R_1, v_2 \rightarrow R_2$

 $\vee_0 \rightarrow S$, $\vee_1 \rightarrow R_1$, $\vee_2 \rightarrow R_2$, $\vee_3 \rightarrow R_{LK}$

 $\vee_0 \rightarrow S$, $\vee_1 \rightarrow R_1$, $\vee_2 \rightarrow R_2$, $\vee_4 \rightarrow R_{LK}$

 $\vee_0 \rightarrow S, \vee_1 \rightarrow R_1, \vee_2 \rightarrow R_2, \vee_5 \rightarrow R_{LK}$

Result: v₀ is spilled *during its whole life time*!

good code. It can be – and has been – improved in many ways:

- the liveness information about virtual registers can be described using a sequence of disjoint intervals instead of a single one,
- virtual registers can be spilled for only a part of their whole life time,
- more sophisticated heuristics can be used to select the virtual register to spill,
- etc.

Linear scan improvements

The basic linear scan algorithm is very simple but still produces reasonably