
Register allocation
Advanced Compiler Construction

Michel Schinz — 2024–04–11

Register allocation

Register allocation consists in:
– rewriting a program that makes use of an unbounded number of virtual or

pseudo-registers,
– into one that only uses physical (machine) registers.

Some virtual registers might have to be spilled to memory.
Register allocation is done:

– very late in the compilation process — typically only instruction scheduling
comes later,

– on an IR very close to machine code.

Setting the scene

We will do register allocation on an RTL with:
– n machine registers R0, …, Rn-1 (some with non-numerical indexes like the

link register RLK),
– unbounded number of virtual registers v0, v1, …

Of course, virtual registers are only available before register allocation.

Running example
Euclid's algorithm to compute greatest common divisor.

In L3

(defrec gcd
 (fun (a b)
 (if (= 0 b)
 a
 (gcd b (% a b)))))

In RTL
gcd: R3 ← done
 if R2 = 0 goto R3
 R3 ← R2
 R2 ← R1 % R2
 R1 ← R3
 R3 ← gcd
 goto R3
done: goto RLK

Calling conventions:
– the arguments are passed in R1, R2, …
– the return address is passed in RLK,
– the return value is passed in R1.

Register allocation example
After register allocation

gcd:
loop: R3 ← done
 if R2 = 0 goto R3
 R3 ← R2
 R2 ← R1 % R2
 R1 ← R3
 R3 ← loop
 goto R3
done: goto RLK

Allocation:
v0 → RLK
v1 → R1
v2 → R2
v3, v4, v5 → R3

Before register allocation

gcd: v0 ← RLK
 v1 ← R1
 v2 ← R2
loop: v3 ← done
 if v2 = 0 goto v3
 v4 ← v2
 v2 ← v1 % v2
 v1 ← v4
 v5 ← loop
 goto v5
done: R1 ← v1
 goto v0

R1, R2: parameters
RLK: return address

allocable
registers:
R1, R2, R3,

RLK

Techniques

We will study two commonly used techniques:
1. register allocation by graph coloring, which:

– produces good results,
– is relatively slow,
– is therefore used mostly in batch compilers,

2. linear scan register allocation, which:
– produces average results,
– is very fast,
– is therefore used mostly in JIT compilers.

Both are global: they allocate registers for a whole function at a time.

Technique #1:
graph coloring

Allocation by graph coloring
Register allocation can be reduced to graph coloring:

1. build the interference graph, which has:
– one node per register — real or virtual,
– one edge between each pair of nodes whose registers are live at the

same time.
2. color the interference graph with at most K colors (K = number of

available registers), so that all nodes have a different color than all their
neighbors.

Problems:
– coloring is NP-complete for arbitrary graphs,
– a K-coloring might not even exist.

Interference graph example
Interference graph

R1

R2

R
LK

v0

v1

v2

v3

v4

v5

R3

Program

gcd:
 v0 ← RLK
 v1 ← R1
 v2 ← R2
loop:
 v3 ← done
 if v2=0 goto v3
 v4 ← v2
 v2 ← v1 % v2
 v1 ← v4
 v5 ← loop
 goto v5
done:
 R1 ← v1
 goto v0

Liveness
{in}{out}

{v0–v2}{v0–v3}
{v0–v3}{v0–v2}
{v0–v2}{v0–v2,v4}
{v0–v2,v4}{v0–v2,v4}
{v0–v2,v4}{v0–v2}
{v0–v2}{v0–v2,v5}
{v0–v2,v5}{v0–v2}

{v0,v1}{R1,v0}
{R1,v0}{R1}

{R1,R2,RLK}{R1,R2,v0}
{R1,R2,v0}{R2,v0,v1}
{R2,v0,v1}{v0–v2}

Coloring exampleColoring example
Original prog.

gcd:
 v0 ← RLK
 v1 ← R1
 v2 ← R2
loop:
 v3 ← done
 if v2=0 goto v3
 v4 ← v2
 v2 ← v1 % v2
 v1 ← v4
 v5 ← loop
 goto v5
done:
 R1 ← v1
 goto v0

Rewritten
prog.

Colored interference graph

R1

R2

R
LK

v0

v1

v2

v3

v4

v5

R3

1 1

2 2

3 3

3

3

4

4

gcd:
 RLK ← RLK
 R1 ← R1
 R2 ← R2
loop:
 R3 ← done
 if R2=0 goto R3
 R3 ← R2
 R2 ← R1 % R2
 R1 ← R3
 R3 ← loop
 goto R3
done:
 R1 ← R1
 goto RLK

Coloring exampleColoring example
Original prog.

gcd:
 v0 ← RLK
 v1 ← R1
 v2 ← R2
loop:
 v3 ← done
 if v2=0 goto v3
 v4 ← v2
 v2 ← v1 % v2
 v1 ← v4
 v5 ← loop
 goto v5
done:
 R1 ← v1
 goto v0

Rewritten
prog.

Colored interference graph

R1

R2

R
LK

v0

v1

v2

v3

v4

v5

R3

1 1

2 2

3 3

3

3

4

4

gcd:
 RLK ← RLK
 R1 ← R1
 R2 ← R2
loop:
 R3 ← done
 if R2=0 goto R3
 R3 ← R2
 R2 ← R1 % R2
 R1 ← R3
 R3 ← loop
 goto R3
done:
 R1 ← R1
 goto RLK

Coloring example (2)
Original prog. Rewritten

prog.
Colored interference graph

R1

R2

R
LK

v0

v1

v2

v3

v4

v5

R3

1

2

3

4

3

4

1

2

2

2

This second coloring is also correct, but produces worse code!

gcd:
 v0 ← RLK
 v1 ← R1
 v2 ← R2
loop:
 v3 ← done
 if v2=0 goto v3
 v4 ← v2
 v2 ← v1 % v2
 v1 ← v4
 v5 ← loop
 goto v5
done:
 R1 ← v1
 goto v0

gcd:
 R3 ← RLK
 RLK ← R1
 R1 ← R2
loop:
 R2 ← done
 if R1=0 goto R2
 R2 ← R1
 R1 ← RLK % R1
 RLK ← R2
 R2 ← loop
 goto R2
done:
 R1 ← RLK
 goto R3

Coloring by simplification

Coloring by simplification is a heuristic technique to color a graph with K
colors:

1. find a node n with less than K neighbors,
2. remove it from the graph,
3. recursively color the simplified graph,
4. color n with any color not used by its neighbors.

What if there is no node with less than K neighbors?
– a K-coloring might not exist,
– but simplification is attempted nevertheless.

Coloring by simplification
Number of available colors (K): 3

1

4 5

2

3

Stack of removed nodes:

Coloring by simplification
Number of available colors (K): 3

1

4

2

3

Stack of removed nodes: 5

Coloring by simplification
Number of available colors (K): 3

1

4

3

Stack of removed nodes: 5 2

Coloring by simplification
Number of available colors (K): 3

4

3

Stack of removed nodes: 5 2 1

Coloring by simplification
Number of available colors (K): 3

4

Stack of removed nodes: 5 2 1 3

Coloring by simplification
Number of available colors (K): 3

4

Stack of removed nodes: 5 2 1 3

Coloring by simplification
Number of available colors (K): 3

4

3

Stack of removed nodes: 5 2 1

Coloring by simplification
Number of available colors (K): 3

1

4

3

Stack of removed nodes: 5 2

Coloring by simplification
Number of available colors (K): 3

1

4

2

3

Stack of removed nodes: 5

Coloring by simplification
Number of available colors (K): 3

1

4 5

2

3

Stack of removed nodes:

Spilling

(Optimistic) spilling

What if all nodes have K or more neighbors during simplification?
A node n must be chosen to be spilled and its value stored in memory instead
of in a register:

– remove its node from the graph (assuming no interference between spilled
value and other values),

– recursively color the simplified graph as usual.
Once recursive coloring is done, two cases:

1. by chance, the neighbors of n do not use all the possible colors, n is not
spilled,

2. otherwise, n is really spilled.

Spill costs

Which node should be spilled? Ideally one:
– whose value is not frequently used, and/or
– that interferes with many other nodes.

For that, compute the spill cost of a node n as:
cost(n) = (rw0(n) + 10 rw1(n) + … + 10k rwk(n)) / degree(n)

where:
– rwi(n) is the number of times the value of n is read or written in a loop of

depth i,
– degree(n) is the number of edges adjacent to n in the interference graph.

Then spill the node with lowest cost.

Spilling of pre-colored nodes

The interference graph contains nodes corresponding to the physical registers
of the machine:

– they are said to be pre-colored, as their color is given by the machine
register they represent,

– they should never be simplified, as they cannot be spilled (they are physical
registers!).

Spilling example: costs

node rw0 rw1 deg. cost
v0 2 0 7 0,29
v1 2 2 6 3,67
v2 1 4 6 6,83
v3 0 2 3 6,67
v4 0 2 3 6,67
v5 0 2 3 6,67

cost = (rw0 + 10 rw1) / degree

gcd:
 v0 ← RLK
 v1 ← R1
 v2 ← R2
loop:
 v3 ← done
 if v2=0 goto v3
 v4 ← v2
 v2 ← v1 % v2
 v1 ← v4
 v5 ← loop
 goto v5
done:
 R1 ← v1
 goto v0

Spilling example

R1

R2

R
LK

v0

v1

v2

v3

v4

v5

1 1

2 2

3

3

3

3

Consequences of spilling

After spilling, rewrite the program to:
– insert code just before the spilled value is read, to fetch it from memory,
– insert code just after the spilled value is written, to write it back to memory.

But: spilling code introduces new virtual registers, so register allocation must
be redone!
In practice, 1–2 iterations are enough in almost all cases.

Spilling code integration
Rewritten program
gcd:
 v6 ← RLK
 push v6
 v1 ← R1
 v2 ← R2
loop:
 v3 ← done
 if v2 = 0 goto v3
 v4 ← v2
 v2 ← v1 % v2
 v1 ← v4
 v5 ← loop
 goto v5
done:
 R1 ← v1
 pop v7
 goto v7

Original program

gcd:
 v0 ← RLK
 v1 ← R1
 v2 ← R2
loop:
 v3 ← done
 if v2 = 0 goto v3
 v4 ← v2
 v2 ← v1 % v2
 v1 ← v4
 v5 ← loop
 goto v5
done:
 R1 ← v1
 goto v0

spilling
of v0

New interference graph
Interference graph w/ spilling

R1

R2

R
LK

v1

v2

v3

v4

v5

1

2

3

v6

v7

1

2

2

3

3

3

3

Final program
gcd:
 RLK ← RLK
 push RLK
 R1 ← R1
 R2 ← R2
loop:
 RLK ← done
 if R2 = 0 goto RLK
 RLK ← R2
 R2 ← R1 % R2
 R1 ← RLK
 RLK ← loop
 goto RLK
done:
 R1 ← R1
 pop R2
 goto R2

New interference graph
Interference graph w/ spilling

R1

R2

R
LK

v1

v2

v3

v4

v5

1

2

3

v6

v7

1

2

2

3

3

3

3

Final program
gcd:
 RLK ← RLK
 push RLK
 R1 ← R1
 R2 ← R2
loop:
 RLK ← done
 if R2 = 0 goto RLK
 RLK ← R2
 R2 ← R1 % R2
 R1 ← RLK
 RLK ← loop
 goto RLK
done:
 R1 ← R1
 pop R2
 goto R2

Coalescing

Coloring quality

Two valid K-colorings of an interference graph are not necessarily equivalent:
one can lead to a much shorter program than the other.
Why? Because "move" instruction of the form
v1 ← v2

can be removed if v1 and v2 end up being allocated to the same register (also
holds when v1 or v2 is a real register).
Goal: make this happen as often as possible.

Coalescing

If v1 and v2 do not interfere, a move instruction of the form
v1 ← v2

can always be removed by replacing v1 and v2 by a new virtual register v1&2.
This is called coalescing, as the nodes of v1 and v2 in the interference graph
coalesce into a single node.

Coalescing issue

Coalescing is not always a good idea!
Might turn a graph that is K-colorable into one that isn't, which implies spilling.
Therefore: use conservative heuristics.

Coalescing heuristics

Briggs: coalesce nodes n1 and n2 to n1&2 iff:
n1&2 has less than K neighbors of significant degree (i.e. of a degree greater
or equal to K),

George: coalesce nodes n1 and n2 to n1&2 iff all neighbors of n1 either:
– already interfere with n2, or
– are of insignificant degree.

Both heuristics are:
– safe: won't make a K-colorable graph uncolorable,
– conservative: might prevent a safe coalescing.

Heuristic #1: Briggs

Briggs: coalesce nodes n1 and n2 to n1&2 iff:
n1&2 has less than K neighbors of significant degree (i.e. of a degree ≥ K),

Rationale:
– during simplification, all the neighbors of n1&2 that are of insignificant

degree will be simplified;
– once they are, n1&2 will have less than K neighbors and will therefore be

simplifiable too.

Heuristic #2: George

George: coalesce nodes n1 and n2 to n1&2 iff all neighbors of n1 either:
– already interfere with n2, or
– are of insignificant degree.

Rationale:
– the neighbors of n1&2 will be:

1. those of n2, and
2. the neighbors of n1 of insignificant degree,

– the latter ones will all be simplified,
– once they are, the graph will be a sub-graph of the original one.

Coalescing example
node

of significant
degree

node of
insignificant

degree

coalescing of
R1 and v1 into

R1v

R1v

R2

R
LK

v0

v2

v3

v4
v5

R3

R1

R2

R
LK

v0
v1

v2

v3

v4
v5

R3

safe
according to
Briggs and

George with
K = 4

non-
interfering,

move-related
nodes

Coalescing example (2)

coalescing of
R2 and v2 into

R2v

R1v

R2

R
LK

v0

v2

v3

v4
v5

R3

R1v

R2v

R
LK

v0

v3

v4
v5

R3

safe
according to
Briggs and

George with
K = 4

Coalescing example (3)

R1v

R2v

R
LK
v

v3

v4
v5

R3

coalescing of
RLK and v0
into RLKv

R1v

R2v

R
LK

v0

v3

v4
v5

R3

safe
according to
Briggs and

George with
K = 4

Coalescing example (3)

R1v

R2v

R
LK
v

v3

v4
v5

R3

coalescing of
RLK and v0
into RLKv

R1v

R2v

R
LK

v0

v3

v4
v5

R3

safe
according to
Briggs and

George with
K = 4

Putting it all
together

Iterated register coalescing

Simplification and coalescing should be interleaved to get iterated register
coalescing:

1. Interference graph nodes are partitioned in two classes: move-related or
not.

2. Simplification is done on not move-related nodes (as move-related ones
could be coalesced).

3. Conservative coalescing is performed.
4. When neither simplification nor coalescing can proceed further, some

move-related nodes are frozen (marked as non-move-related).
5. The process is restarted at 2.

Iterated register coalescing
build

simplify

coalesce

freeze

potential spill

select

actual spill

in case of
actual spill

Assignment
constraints

Assignment constraints

Current assumption: a virtual register can be assigned to any free physical
register.
Not always true because of assignment constraints due to:

– registers classes (e.g. integer vs. floating-point registers),
– instructions with arguments or result in specific registers,
– calling conventions.

A realistic register allocator has to be able to satisfy these constraints.

Register classes

Most architectures have several register classes:
– integer vs floating-point,
– address vs data,
– etc.

To take them into account in a coloring-based allocator:
introduce artificial interferences between a node and all pre-colored nodes
corresponding to registers to which it cannot be allocated.

Calling conventions

How to deal with the fact that calling conventions pass arguments in specific
registers?
At function entry, copy arguments to new virtual regs:
fact:
 v1 ← R1 ; copy first argument to v1

Before a call, load arguments in appropriate registers:
 R1 ← v2 ; load first argument from v2
 CALL fact

Whenever possible, these instructions will be removed by coalescing.

Caller/callee-saved registers

Calling conventions distinguish two kinds of registers:
– caller-saved: saved by the caller before a call and restored after it,
– callee-saved: saved by the callee at function entry and restored before

function exit.
Ideally:

– virtual registers having to survive at least one call should be assigned to
callee-saved registers,

– other virtual registers should be assigned to caller-saved registers.
How can this be obtained in a coloring-based allocator?

Caller/callee-saved registers

Caller-saved registers do not survive a function call.
To model this:
Add interference edges between all virtual registers live across at least one
call and (physical) caller-saved registers.

Consequence:
Virtual registers live across at least one call won't be assigned to caller-saved
registers.

Therefore:
They will either be allocated to callee-saved registers, or spilled!

Saving callee-saved registers

Callee-saved registers must be preserved by all functions, so:
– copy them to fresh temporary registers at function entry,
– restore them before exit.

Saving callee-saved registers
For example, if R8 is callee-saved:
entry:
 v1 ← R8 ; save callee-saved R8 in v1
 … ; function body
 R8 ← v1 ; restore callee-saved R8
 goto RLK

If register pressure is low:
– R8 and v1 will be coalesced, and
– the two move instructions will be removed.

If register pressure is high:
– v1 will be spilled, making R8 available in the function (e.g. to store a virtual

register live across a call).

Technique #2:
linear scan

Linear scan

The basic linear scan technique is very simple:
– the program is linearized — i.e. represented as a linear sequence of

instructions, not as a graph,
– a unique live range is computed for every variable, going from the first to

the last instruction during which it is live,
– registers are allocated by iterating over the intervals sorted by increasing

starting point: each time an interval starts, the next free register is allocated
to it, and each time an interval ends, its register is freed,

– if no register is available, the active range ending last is chosen to have its
variable spilled.

Linear scan example
Linearized version of GCD computation:

Program
 1 gcd: v0 ← RLK
 2 v1 ← R1
 3 v2 ← R2
 4 loop: v3 ← done
 5 if v2=0 goto v3
 6 v4 ← v2
 7 v2 ← v1 % v2
 8 v1 ← v4
 9 v5 ← loop
10 goto v5
11 done: R1 ← v1
12 goto v0

Live ranges
v0: [1+,12-]
v1: [2+,11-]
v2: [3+,10+]
v3: [4+,5-]
v4: [6+,8-]
v5: [9+,10-]

Notation:
 i+ entry of instr. i
 i- exit of instr. i

Linear scan example (4 r.)
1 2 3 4 5 6 7 8 9 10 11 12

v0
v1
v2
v3
v4
v5
R1
R2
R3
RLK

time active intervals allocation

Linear scan example (4 r.)
1 2 3 4 5 6 7 8 9 10 11 12

v0
v1
v2
v3
v4
v5
R1
R2
R3
RLK

time active intervals allocation
1+ [1+,12-] v0→R3

Linear scan example (4 r.)
1 2 3 4 5 6 7 8 9 10 11 12

v0
v1
v2
v3
v4
v5
R1
R2
R3
RLK

time active intervals allocation
1+ [1+,12-] v0→R3
2+ [2+,11-],[1+,12-] v0→R3,v1→R1

Linear scan example (4 r.)
1 2 3 4 5 6 7 8 9 10 11 12

v0
v1
v2
v3
v4
v5
R1
R2
R3
RLK

time active intervals allocation
1+ [1+,12-] v0→R3
2+ [2+,11-],[1+,12-] v0→R3,v1→R1
3+ [3+,10+],[2+,11-],[1+,12-] v0→R3,v1→R1,v2→R2

Linear scan example (4 r.)
1 2 3 4 5 6 7 8 9 10 11 12

v0
v1
v2
v3
v4
v5
R1
R2
R3
RLK

time active intervals allocation
1+ [1+,12-] v0→R3
2+ [2+,11-],[1+,12-] v0→R3,v1→R1
3+ [3+,10+],[2+,11-],[1+,12-] v0→R3,v1→R1,v2→R2
4+ [4+,5-],[3+,10+],[2+,11-],[1+,12-] v0→R3,v1→R1,v2→R2,v3→RLK

Linear scan example (4 r.)
1 2 3 4 5 6 7 8 9 10 11 12

v0
v1
v2
v3
v4
v5
R1
R2
R3
RLK

time active intervals allocation
1+ [1+,12-] v0→R3
2+ [2+,11-],[1+,12-] v0→R3,v1→R1
3+ [3+,10+],[2+,11-],[1+,12-] v0→R3,v1→R1,v2→R2
4+ [4+,5-],[3+,10+],[2+,11-],[1+,12-] v0→R3,v1→R1,v2→R2,v3→RLK
6+ [6+,8-],[3+,10+],[2+,11-],[1+,12-] v0→R3,v1→R1,v2→R2,v4→RLK

Linear scan example (4 r.)
1 2 3 4 5 6 7 8 9 10 11 12

v0
v1
v2
v3
v4
v5
R1
R2
R3
RLK

time active intervals allocation
1+ [1+,12-] v0→R3
2+ [2+,11-],[1+,12-] v0→R3,v1→R1
3+ [3+,10+],[2+,11-],[1+,12-] v0→R3,v1→R1,v2→R2
4+ [4+,5-],[3+,10+],[2+,11-],[1+,12-] v0→R3,v1→R1,v2→R2,v3→RLK
6+ [6+,8-],[3+,10+],[2+,11-],[1+,12-] v0→R3,v1→R1,v2→R2,v4→RLK
9+ [9+,10-],[3+,10+],[2+,11-],[1+,12-] v0→R3,v1→R1,v2→R2,v5→RLK

Result: no spilling

Linear scan example (3 r.)
1 2 3 4 5 6 7 8 9 10 11 12

v0
v1
v2
v3
v4
v5
R1
R2
RLK

time active intervals allocation

Linear scan example (3 r.)
1 2 3 4 5 6 7 8 9 10 11 12

v0
v1
v2
v3
v4
v5
R1
R2
RLK

time active intervals allocation
1+ [1+,12-] v0→RLK

Linear scan example (3 r.)
1 2 3 4 5 6 7 8 9 10 11 12

v0
v1
v2
v3
v4
v5
R1
R2
RLK

time active intervals allocation
1+ [1+,12-] v0→RLK
2+ [2+,11-],[1+,12-] v0→RLK,v1→R1

Linear scan example (3 r.)
1 2 3 4 5 6 7 8 9 10 11 12

v0
v1
v2
v3
v4
v5
R1
R2
RLK

time active intervals allocation
1+ [1+,12-] v0→RLK
2+ [2+,11-],[1+,12-] v0→RLK,v1→R1
3+ [3+,10+],[2+,11-],[1+,12-] v0→RLK,v1→R1,v2→R2

Linear scan example (3 r.)
1 2 3 4 5 6 7 8 9 10 11 12

v0
v1
v2
v3
v4
v5
R1
R2
RLK

time active intervals allocation
1+ [1+,12-] v0→RLK
2+ [2+,11-],[1+,12-] v0→RLK,v1→R1
3+ [3+,10+],[2+,11-],[1+,12-] v0→RLK,v1→R1,v2→R2
4+ [4+,5-],[3+,10+],[2+,11-] v0→S,v1→R1,v2→R2,v3→RLK

Linear scan example (3 r.)
1 2 3 4 5 6 7 8 9 10 11 12

v0
v1
v2
v3
v4
v5
R1
R2
RLK

time active intervals allocation
1+ [1+,12-] v0→RLK
2+ [2+,11-],[1+,12-] v0→RLK,v1→R1
3+ [3+,10+],[2+,11-],[1+,12-] v0→RLK,v1→R1,v2→R2
4+ [4+,5-],[3+,10+],[2+,11-] v0→S,v1→R1,v2→R2,v3→RLK
6+ [6+,8-],[3+,10+],[2+,11-] v0→S,v1→R1,v2→R2,v4→RLK

Linear scan example (3 r.)
1 2 3 4 5 6 7 8 9 10 11 12

v0
v1
v2
v3
v4
v5
R1
R2
RLK

time active intervals allocation
1+ [1+,12-] v0→RLK
2+ [2+,11-],[1+,12-] v0→RLK,v1→R1
3+ [3+,10+],[2+,11-],[1+,12-] v0→RLK,v1→R1,v2→R2
4+ [4+,5-],[3+,10+],[2+,11-] v0→S,v1→R1,v2→R2,v3→RLK
6+ [6+,8-],[3+,10+],[2+,11-] v0→S,v1→R1,v2→R2,v4→RLK
9+ [9+,10-],[3+,10+],[2+,11-] v0→S,v1→R1,v2→R2,v5→RLK

Result: v0 is spilled during its whole life time!

Linear scan improvements

The basic linear scan algorithm is very simple but still produces reasonably
good code. It can be — and has been — improved in many ways:

– the liveness information about virtual registers can be described using a
sequence of disjoint intervals instead of a single one,

– virtual registers can be spilled for only a part of their whole life time,
– more sophisticated heuristics can be used to select the virtual register to

spill,
– etc.

