
Register allocation
Advanced Compiler Construction 

Michel Schinz — 2024–04–11



Register allocation

Register allocation consists in: 
– rewriting a program that makes use of an unbounded number of virtual or 

pseudo-registers, 
– into one that only uses physical (machine) registers. 

Some virtual registers might have to be spilled to memory. 
Register allocation is done: 

– very late in the compilation process — typically only instruction scheduling 
comes later, 

– on an IR very close to machine code.



Setting the scene

We will do register allocation on an RTL with: 
– n machine registers R0, …, Rn-1 (some with non-numerical indexes like the 

link register RLK), 
– unbounded number of virtual registers v0, v1, … 

Of course, virtual registers are only available before register allocation.



Running example
Euclid's algorithm to compute greatest common divisor.

In L3

(defrec gcd 
  (fun (a b) 
    (if (= 0 b) 
        a 
        (gcd b (% a b)))))

In RTL
gcd:  R3 ← done 
      if R2 = 0 goto R3 
      R3 ← R2 
      R2 ← R1 % R2 
      R1 ← R3 
      R3 ← gcd 
      goto R3 
done: goto RLK

Calling conventions: 
– the arguments are passed in R1, R2, … 
– the return address is passed in RLK, 
– the return value is passed in R1.



Register allocation example
After register allocation

gcd: 
loop: R3 ← done 
      if R2 = 0 goto R3 
      R3 ← R2 
      R2 ← R1 % R2 
      R1 ← R3 
      R3 ← loop 
      goto R3 
done: goto RLK

Allocation: 
v0 → RLK 
v1 → R1 
v2 → R2 
v3, v4, v5 → R3

Before register allocation

gcd:  v0 ← RLK 
      v1 ← R1 
      v2 ← R2 
loop: v3 ← done 
      if v2 = 0 goto v3 
      v4 ← v2 
      v2 ← v1 % v2 
      v1 ← v4 
      v5 ← loop 
      goto v5 
done: R1 ← v1 
      goto v0

R1, R2: parameters 
RLK: return address

allocable 
registers: 
R1, R2, R3, 

RLK



Techniques

We will study two commonly used techniques: 
1. register allocation by graph coloring, which: 

– produces good results, 
– is relatively slow, 
– is therefore used mostly in batch compilers, 

2. linear scan register allocation, which: 
– produces average results, 
– is very fast, 
– is therefore used mostly in JIT compilers. 

Both are global: they allocate registers for a whole function at a time.



Technique #1: 
graph coloring



Allocation by graph coloring
Register allocation can be reduced to graph coloring: 

1. build the interference graph, which has: 
– one node per register — real or virtual, 
– one edge between each pair of nodes whose registers are live at the 

same time. 
2. color the interference graph with at most K colors (K = number of 

available registers), so that all nodes have a different color than all their 
neighbors. 

Problems: 
– coloring is NP-complete for arbitrary graphs, 
– a K-coloring might not even exist. 



Interference graph example
Interference graph
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Program

gcd: 
  v0 ← RLK 
  v1 ← R1 
  v2 ← R2 
loop: 
  v3 ← done 
  if v2=0 goto v3 
  v4 ← v2 
  v2 ← v1 % v2 
  v1 ← v4 
  v5 ← loop 
  goto v5 
done: 
  R1 ← v1 
  goto v0

Liveness 
{in}{out}

{v0–v2}{v0–v3} 
{v0–v3}{v0–v2} 
{v0–v2}{v0–v2,v4} 
{v0–v2,v4}{v0–v2,v4} 
{v0–v2,v4}{v0–v2} 
{v0–v2}{v0–v2,v5} 
{v0–v2,v5}{v0–v2}

{v0,v1}{R1,v0} 
{R1,v0}{R1}

{R1,R2,RLK}{R1,R2,v0} 
{R1,R2,v0}{R2,v0,v1} 
{R2,v0,v1}{v0–v2}



Coloring exampleColoring example
Original prog.

gcd: 
  v0 ← RLK 
  v1 ← R1 
  v2 ← R2 
loop: 
  v3 ← done 
  if v2=0 goto v3 
  v4 ← v2 
  v2 ← v1 % v2 
  v1 ← v4 
  v5 ← loop 
  goto v5 
done: 
  R1 ← v1 
  goto v0

Rewritten 
prog.

Colored interference graph
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gcd: 
  RLK ← RLK 
  R1 ← R1 
  R2 ← R2 
loop: 
  R3 ← done 
  if R2=0 goto R3 
  R3 ← R2 
  R2 ← R1 % R2 
  R1 ← R3 
  R3 ← loop 
  goto R3 
done: 
  R1 ← R1 
  goto RLK



Coloring exampleColoring example
Original prog.

gcd: 
  v0 ← RLK 
  v1 ← R1 
  v2 ← R2 
loop: 
  v3 ← done 
  if v2=0 goto v3 
  v4 ← v2 
  v2 ← v1 % v2 
  v1 ← v4 
  v5 ← loop 
  goto v5 
done: 
  R1 ← v1 
  goto v0

Rewritten 
prog.

Colored interference graph
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gcd: 
  RLK ← RLK 
  R1 ← R1 
  R2 ← R2 
loop: 
  R3 ← done 
  if R2=0 goto R3 
  R3 ← R2 
  R2 ← R1 % R2 
  R1 ← R3 
  R3 ← loop 
  goto R3 
done: 
  R1 ← R1 
  goto RLK



Coloring example (2)
Original prog. Rewritten 

prog.
Colored interference graph
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This second coloring is also correct, but produces worse code!

gcd: 
  v0 ← RLK 
  v1 ← R1 
  v2 ← R2 
loop: 
  v3 ← done 
  if v2=0 goto v3 
  v4 ← v2 
  v2 ← v1 % v2 
  v1 ← v4 
  v5 ← loop 
  goto v5 
done: 
  R1 ← v1 
  goto v0

gcd: 
  R3 ← RLK 
  RLK ← R1 
  R1 ← R2 
loop: 
  R2 ← done 
  if R1=0 goto R2 
  R2 ← R1 
  R1 ← RLK % R1 
  RLK ← R2 
  R2 ← loop 
  goto R2 
done: 
  R1 ← RLK 
  goto R3



Coloring by simplification

Coloring by simplification is a heuristic technique to color a graph with K 
colors: 

1. find a node n with less than K neighbors, 
2. remove it from the graph, 
3. recursively color the simplified graph, 
4. color n with any color not used by its neighbors. 

What if there is no node with less than K neighbors? 
– a K-coloring might not exist, 
– but simplification is attempted nevertheless.



Coloring by simplification
Number of available colors (K): 3
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Coloring by simplification
Number of available colors (K): 3
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Coloring by simplification
Number of available colors (K): 3
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Coloring by simplification
Number of available colors (K): 3
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Coloring by simplification
Number of available colors (K): 3
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Coloring by simplification
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4

Stack of removed nodes: 5 2 1 3



Coloring by simplification
Number of available colors (K): 3
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Coloring by simplification
Number of available colors (K): 3
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Coloring by simplification
Number of available colors (K): 3
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Coloring by simplification
Number of available colors (K): 3
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Spilling



(Optimistic) spilling

What if all nodes have K or more neighbors during simplification? 
A node n must be chosen to be spilled and its value stored in memory instead 
of in a register: 

– remove its node from the graph (assuming no interference between spilled 
value and other values), 

– recursively color the simplified graph as usual. 
Once recursive coloring is done, two cases: 

1. by chance, the neighbors of n do not use all the possible colors, n is not 
spilled, 

2. otherwise, n is really spilled.



Spill costs

Which node should be spilled? Ideally one: 
– whose value is not frequently used, and/or 
– that interferes with many other nodes. 

For that, compute the spill cost of a node n as: 
cost(n) = (rw0(n) + 10 rw1(n) + … + 10k rwk(n)) / degree(n) 

where: 
– rwi(n) is the number of times the value of n is read or written in a loop of 

depth i, 
– degree(n) is the number of edges adjacent to n in the interference graph. 

Then spill the node with lowest cost.



Spilling of pre-colored nodes

The interference graph contains nodes corresponding to the physical registers 
of the machine: 

– they are said to be pre-colored, as their color is given by the machine 
register they represent, 

– they should never be simplified, as they cannot be spilled (they are physical 
registers!).



Spilling example: costs

node rw0 rw1 deg. cost
v0 2 0 7 0,29
v1 2 2 6 3,67
v2 1 4 6 6,83
v3 0 2 3 6,67
v4 0 2 3 6,67
v5 0 2 3 6,67

cost = (rw0 + 10 rw1) / degree

gcd: 
  v0 ← RLK 
  v1 ← R1 
  v2 ← R2 
loop: 
  v3 ← done 
  if v2=0 goto v3 
  v4 ← v2 
  v2 ← v1 % v2 
  v1 ← v4 
  v5 ← loop 
  goto v5 
done: 
  R1 ← v1 
  goto v0



Spilling example
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Consequences of spilling

After spilling, rewrite the program to: 
– insert code just before the spilled value is read, to fetch it from memory, 
– insert code just after the spilled value is written, to write it back to memory. 

But: spilling code introduces new virtual registers, so register allocation must 
be redone! 
In practice, 1–2 iterations are enough in almost all cases.



Spilling code integration
Rewritten program
gcd: 
  v6 ← RLK 
  push v6 
  v1 ← R1 
  v2 ← R2 
loop: 
  v3 ← done 
  if v2 = 0 goto v3 
  v4 ← v2 
  v2 ← v1 % v2 
  v1 ← v4 
  v5 ← loop 
  goto v5 
done: 
  R1 ← v1 
  pop v7 
  goto v7

Original program

gcd: 
  v0 ← RLK 
  v1 ← R1 
  v2 ← R2 
loop: 
  v3 ← done 
  if v2 = 0 goto v3 
  v4 ← v2 
  v2 ← v1 % v2 
  v1 ← v4 
  v5 ← loop 
  goto v5 
done: 
  R1 ← v1 
  goto v0

spilling 
of v0



New interference graph
Interference graph w/ spilling
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Final program
gcd: 
  RLK ← RLK 
  push RLK 
  R1 ← R1 
  R2 ← R2 
loop: 
  RLK ← done 
  if R2 = 0 goto RLK 
  RLK ← R2 
  R2 ← R1 % R2 
  R1 ← RLK 
  RLK ← loop 
  goto RLK 
done: 
  R1 ← R1 
  pop R2 
  goto R2



New interference graph
Interference graph w/ spilling

R1

R2

R
LK

v1

v2

v3

v4

v5

1

2

3

v6

v7

1

2

2

3

3

3

3

Final program
gcd: 
  RLK ← RLK 
  push RLK 
  R1 ← R1 
  R2 ← R2 
loop: 
  RLK ← done 
  if R2 = 0 goto RLK 
  RLK ← R2 
  R2 ← R1 % R2 
  R1 ← RLK 
  RLK ← loop 
  goto RLK 
done: 
  R1 ← R1 
  pop R2 
  goto R2



Coalescing



Coloring quality

Two valid K-colorings of an interference graph are not necessarily equivalent: 
one can lead to a much shorter program than the other. 
Why? Because "move" instruction of the form 
v1 ← v2 

can be removed if v1 and v2 end up being allocated to the same register (also 
holds when v1 or v2 is a real register). 
Goal: make this happen as often as possible.



Coalescing

If v1 and v2 do not interfere, a move instruction of the form 
v1 ← v2 

can always be removed by replacing v1 and v2 by a new virtual register v1&2. 
This is called coalescing, as the nodes of v1 and v2 in the interference graph 
coalesce into a single node.



Coalescing issue

Coalescing is not always a good idea! 
Might turn a graph that is K-colorable into one that isn't, which implies spilling. 
Therefore: use conservative heuristics.



Coalescing heuristics

Briggs: coalesce nodes n1 and n2 to n1&2 iff: 
n1&2 has less than K neighbors of significant degree (i.e. of a degree greater 
or equal to K), 

George: coalesce nodes n1 and n2 to n1&2 iff all neighbors of n1 either: 
– already interfere with n2, or 
– are of insignificant degree. 

Both heuristics are: 
– safe: won't make a K-colorable graph uncolorable, 
– conservative: might prevent a safe coalescing.



Heuristic #1: Briggs

Briggs: coalesce nodes n1 and n2 to n1&2 iff: 
n1&2 has less than K neighbors of significant degree (i.e. of a degree ≥ K), 

Rationale: 
– during simplification, all the neighbors of n1&2 that are of insignificant 

degree will be simplified; 
– once they are, n1&2 will have less than K neighbors and will therefore be 

simplifiable too.



Heuristic #2: George

George: coalesce nodes n1 and n2 to n1&2 iff all neighbors of n1 either: 
– already interfere with n2, or 
– are of insignificant degree. 

Rationale: 
– the neighbors of n1&2 will be: 

1. those of n2, and 
2. the neighbors of n1 of insignificant degree, 

– the latter ones will all be simplified, 
– once they are, the graph will be a sub-graph of the original one.
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Coalescing example (2)
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Coalescing example (3)
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Coalescing example (3)
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Putting it all 
together



Iterated register coalescing

Simplification and coalescing should be interleaved to get iterated register 
coalescing: 

1. Interference graph nodes are partitioned in two classes: move-related or 
not. 

2. Simplification is done on not move-related nodes (as move-related ones 
could be coalesced). 

3. Conservative coalescing is performed. 
4. When neither simplification nor coalescing can proceed further, some 

move-related nodes are frozen (marked as non-move-related). 
5. The process is restarted at 2.



Iterated register coalescing
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Assignment 
constraints



Assignment constraints

Current assumption: a virtual register can be assigned to any free physical 
register. 
Not always true because of assignment constraints due to: 

– registers classes (e.g. integer vs. floating-point registers), 
– instructions with arguments or result in specific registers, 
– calling conventions. 

A realistic register allocator has to be able to satisfy these constraints.



Register classes

Most architectures have several register classes: 
– integer vs floating-point, 
– address vs data, 
– etc. 

To take them into account in a coloring-based allocator: 
introduce artificial interferences between a node and all pre-colored nodes 
corresponding to registers to which it cannot be allocated.



Calling conventions

How to deal with the fact that calling conventions pass arguments in specific 
registers? 
At function entry, copy arguments to new virtual regs: 
fact: 
  v1 ← R1    ; copy first argument to v1 

Before a call, load arguments in appropriate registers: 
  R1 ← v2    ; load first argument from v2 
  CALL fact 

Whenever possible, these instructions will be removed by coalescing.



Caller/callee-saved registers

Calling conventions distinguish two kinds of registers: 
– caller-saved: saved by the caller before a call and restored after it, 
– callee-saved: saved by the callee at function entry and restored before 

function exit. 
Ideally: 

– virtual registers having to survive at least one call should be assigned to 
callee-saved registers, 

– other virtual registers should be assigned to caller-saved registers. 
How can this be obtained in a coloring-based allocator?



Caller/callee-saved registers

Caller-saved registers do not survive a function call. 
To model this: 
Add interference edges between all virtual registers live across at least one 
call and (physical) caller-saved registers. 

Consequence: 
Virtual registers live across at least one call won't be assigned to caller-saved 
registers. 

Therefore: 
They will either be allocated to callee-saved registers, or spilled!



Saving callee-saved registers

Callee-saved registers must be preserved by all functions, so: 
– copy them to fresh temporary registers at function entry, 
– restore them before exit.



Saving callee-saved registers
For example, if R8 is callee-saved: 
entry: 
  v1 ← R8  ; save callee-saved R8 in v1 
  …        ; function body 
  R8 ← v1  ; restore callee-saved R8 
  goto RLK 

If register pressure is low: 
– R8 and v1 will be coalesced, and 
– the two move instructions will be removed. 

If register pressure is high: 
– v1 will be spilled, making R8 available in the function (e.g. to store a virtual 

register live across a call).



Technique #2: 
linear scan



Linear scan

The basic linear scan technique is very simple: 
– the program is linearized — i.e. represented as a linear sequence of 

instructions, not as a graph, 
– a unique live range is computed for every variable, going from the first to 

the last instruction during which it is live, 
– registers are allocated by iterating over the intervals sorted by increasing 

starting point: each time an interval starts, the next free register is allocated 
to it, and each time an interval ends, its register is freed, 

– if no register is available, the active range ending last is chosen to have its 
variable spilled.



Linear scan example
Linearized version of GCD computation:

Program
 1 gcd:  v0 ← RLK 
 2       v1 ← R1 
 3       v2 ← R2 
 4 loop: v3 ← done 
 5       if v2=0 goto v3 
 6       v4 ← v2 
 7       v2 ← v1 % v2 
 8       v1 ← v4 
 9       v5 ← loop 
10       goto v5 
11 done: R1 ← v1 
12       goto v0

Live ranges
v0: [1+,12-] 
v1: [2+,11-] 
v2: [3+,10+] 
v3: [4+,5-] 
v4: [6+,8-] 
v5: [9+,10-]

Notation: 
  i+ entry of instr. i 
  i- exit of instr. i



Linear scan example (4 r.)
1 2 3 4 5 6 7 8 9 10 11 12

v0
v1
v2
v3
v4
v5
R1
R2
R3
RLK

time active intervals allocation



Linear scan example (4 r.)
1 2 3 4 5 6 7 8 9 10 11 12

v0
v1
v2
v3
v4
v5
R1
R2
R3
RLK

time active intervals allocation
1+ [1+,12-] v0→R3



Linear scan example (4 r.)
1 2 3 4 5 6 7 8 9 10 11 12

v0
v1
v2
v3
v4
v5
R1
R2
R3
RLK

time active intervals allocation
1+ [1+,12-] v0→R3
2+ [2+,11-],[1+,12-] v0→R3,v1→R1



Linear scan example (4 r.)
1 2 3 4 5 6 7 8 9 10 11 12

v0
v1
v2
v3
v4
v5
R1
R2
R3
RLK

time active intervals allocation
1+ [1+,12-] v0→R3
2+ [2+,11-],[1+,12-] v0→R3,v1→R1
3+ [3+,10+],[2+,11-],[1+,12-] v0→R3,v1→R1,v2→R2



Linear scan example (4 r.)
1 2 3 4 5 6 7 8 9 10 11 12

v0
v1
v2
v3
v4
v5
R1
R2
R3
RLK

time active intervals allocation
1+ [1+,12-] v0→R3
2+ [2+,11-],[1+,12-] v0→R3,v1→R1
3+ [3+,10+],[2+,11-],[1+,12-] v0→R3,v1→R1,v2→R2
4+ [4+,5-],[3+,10+],[2+,11-],[1+,12-] v0→R3,v1→R1,v2→R2,v3→RLK



Linear scan example (4 r.)
1 2 3 4 5 6 7 8 9 10 11 12

v0
v1
v2
v3
v4
v5
R1
R2
R3
RLK

time active intervals allocation
1+ [1+,12-] v0→R3
2+ [2+,11-],[1+,12-] v0→R3,v1→R1
3+ [3+,10+],[2+,11-],[1+,12-] v0→R3,v1→R1,v2→R2
4+ [4+,5-],[3+,10+],[2+,11-],[1+,12-] v0→R3,v1→R1,v2→R2,v3→RLK
6+ [6+,8-],[3+,10+],[2+,11-],[1+,12-] v0→R3,v1→R1,v2→R2,v4→RLK



Linear scan example (4 r.)
1 2 3 4 5 6 7 8 9 10 11 12

v0
v1
v2
v3
v4
v5
R1
R2
R3
RLK

time active intervals allocation
1+ [1+,12-] v0→R3
2+ [2+,11-],[1+,12-] v0→R3,v1→R1
3+ [3+,10+],[2+,11-],[1+,12-] v0→R3,v1→R1,v2→R2
4+ [4+,5-],[3+,10+],[2+,11-],[1+,12-] v0→R3,v1→R1,v2→R2,v3→RLK
6+ [6+,8-],[3+,10+],[2+,11-],[1+,12-] v0→R3,v1→R1,v2→R2,v4→RLK
9+ [9+,10-],[3+,10+],[2+,11-],[1+,12-] v0→R3,v1→R1,v2→R2,v5→RLK

Result: no spilling



Linear scan example (3 r.)
1 2 3 4 5 6 7 8 9 10 11 12
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time active intervals allocation



Linear scan example (3 r.)
1 2 3 4 5 6 7 8 9 10 11 12

v0
v1
v2
v3
v4
v5
R1
R2
RLK

time active intervals allocation
1+ [1+,12-] v0→RLK



Linear scan example (3 r.)
1 2 3 4 5 6 7 8 9 10 11 12

v0
v1
v2
v3
v4
v5
R1
R2
RLK

time active intervals allocation
1+ [1+,12-] v0→RLK
2+ [2+,11-],[1+,12-] v0→RLK,v1→R1



Linear scan example (3 r.)
1 2 3 4 5 6 7 8 9 10 11 12

v0
v1
v2
v3
v4
v5
R1
R2
RLK

time active intervals allocation
1+ [1+,12-] v0→RLK
2+ [2+,11-],[1+,12-] v0→RLK,v1→R1
3+ [3+,10+],[2+,11-],[1+,12-] v0→RLK,v1→R1,v2→R2



Linear scan example (3 r.)
1 2 3 4 5 6 7 8 9 10 11 12

v0
v1
v2
v3
v4
v5
R1
R2
RLK

time active intervals allocation
1+ [1+,12-] v0→RLK
2+ [2+,11-],[1+,12-] v0→RLK,v1→R1
3+ [3+,10+],[2+,11-],[1+,12-] v0→RLK,v1→R1,v2→R2
4+ [4+,5-],[3+,10+],[2+,11-] v0→S,v1→R1,v2→R2,v3→RLK



Linear scan example (3 r.)
1 2 3 4 5 6 7 8 9 10 11 12

v0
v1
v2
v3
v4
v5
R1
R2
RLK

time active intervals allocation
1+ [1+,12-] v0→RLK
2+ [2+,11-],[1+,12-] v0→RLK,v1→R1
3+ [3+,10+],[2+,11-],[1+,12-] v0→RLK,v1→R1,v2→R2
4+ [4+,5-],[3+,10+],[2+,11-] v0→S,v1→R1,v2→R2,v3→RLK
6+ [6+,8-],[3+,10+],[2+,11-] v0→S,v1→R1,v2→R2,v4→RLK



Linear scan example (3 r.)
1 2 3 4 5 6 7 8 9 10 11 12

v0
v1
v2
v3
v4
v5
R1
R2
RLK

time active intervals allocation
1+ [1+,12-] v0→RLK
2+ [2+,11-],[1+,12-] v0→RLK,v1→R1
3+ [3+,10+],[2+,11-],[1+,12-] v0→RLK,v1→R1,v2→R2
4+ [4+,5-],[3+,10+],[2+,11-] v0→S,v1→R1,v2→R2,v3→RLK
6+ [6+,8-],[3+,10+],[2+,11-] v0→S,v1→R1,v2→R2,v4→RLK
9+ [9+,10-],[3+,10+],[2+,11-] v0→S,v1→R1,v2→R2,v5→RLK

Result: v0 is spilled during its whole life time!



Linear scan improvements

The basic linear scan algorithm is very simple but still produces reasonably 
good code. It can be — and has been — improved in many ways: 

– the liveness information about virtual registers can be described using a 
sequence of disjoint intervals instead of a single one, 

– virtual registers can be spilled for only a part of their whole life time, 
– more sophisticated heuristics can be used to select the virtual register to 

spill, 
– etc.


