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Optimizations
The goal of optimizations is to rewrite the program being 
compiled to a new program that is simultaneously: 

– behaviorally equivalent to the original one, 
– better in some respect — e.g. faster, smaller, more 

energy-efficient, etc. 
Optimizations can be broadly split in two classes: 

– machine-independent optimizations, like constant 
folding or dead code elimination, are high-level and do 
not depend on the target architecture, 

– machine-dependent optimizations, like register 
allocation or instruction scheduling, are low-level and 
depend on the target architecture.



Rewriting optimizations

In this lesson, we will examine a simple set of machine-
independent rewriting optimizations. 
Most of them are relatively simple rewrite rules that 
transform the source program to a shorter, equivalent one.



IRs and 
optimizations



The importance of IRs

The intermediate representation (IR) on which rewriting 
optimizations are performed can have a dramatic impact on 
their ease of implementation. 
A rewriting optimization generally works in two steps: 

1. the program is analyzed to find rewrite opportunities, 
2. the program is rewritten based on the opportunities 

identified in the first step. 
A good IR should make both steps as easy as possible. The 
following examples illustrate the importance of using the 
right IR.



Case 1: constant propagation
To illustrate the impact of IR on the analysis step, consider 
the following program fragment in some imaginary IR: 
x ← 7 
… 

Is it legal to perform constant propagation and blindly 
replace all later occurrences of x by 7? It depends on the IR: 

– If multiple assignments to the same variable are allowed, 
then additional (data-flow) analyses are required to 
answer the question, as x might be re-assigned later. 

– However, if multiple assignments to the same variable 
are prohibited, then yes, all occurrences of x can be 
unconditionally replaced by 7!



Other simple optimizations
Apart from constant propagation, many simple 
optimizations are made hard by the presence of multiple 
assignments to a single variable: 

– common-subexpression elimination, which consists in 
avoiding the repeated evaluation of expressions, 

– (simple) dead code elimination, which consists in 
removing assignments to variables whose value is not 
used later, 

– etc. 
In all cases, analyses are required to distinguish the various 
“versions” of a variable that appear in the program. 
Conclusion: a good IR should not allow multiple 
assignments to a variable!



Case 2: inlining

Inlining (or in-line expansion) consists in replacing a call to 
a function by a copy of the body of that function, with 
parameters replaced by the actual arguments. It is a very 
important compiler optimization, as it often opens the door 
to further optimizations. 
Some aspects of the intermediate representation can have 
an important impact on the implementation of inlining. To 
illustrate this, let us examine some problems that can occur 
when performing inlining directly on the AST — a choice that 
might seem reasonable at first sight.



Naïve inlining: problem #1
(def print/ret (fun (x) (int-print x) x)) 
(def twice (fun (y) (+ y y))) 
(def f (fun (z) (twice (print/ret z))))

incorrect inlining 
of twice in f

(def f (fun (z) 
          (+ (print/ret z) 
             (print/ret z))))

Possible solution: bind actual parameters to variables (using 
a let) to ensure that they are evaluated at most once.

z is 
printed 
twice!



Naïve inlining: problem #2
(def first (fun (x y) x)) 
(def print/ret 
  (fun (z) (first z (int-print z))))

incorrect inlining of 
first in print/ret

(def print/ret (fun (z) z))

Possible solution: bind actual parameters to variables (using 
a let) to ensure that they are evaluated at least once.

z 
isn't printed 

at all!



Easy inlining

The two pitfalls presented earlier can be avoided by 
bindings actual arguments to variables (using a let) before 
using them in the body of the inlined function. 
However, a properly-designed IR can also avoid the 
problems altogether by ensuring that actual parameters are 
always atoms, i.e. variables or constants. 
Conclusion: a good IR should only allow atomic arguments 
to functions.



IR comparison

Using the two very basic criterions we identified, we can 
evaluate the various classes of IRs we have seen: 

– standard RTL/CFG is bad in that its variables are 
mutable; however, it allows only atoms as function 
arguments, which is good, 

– RTL/CFG in SSA form, CPS/L3 and similar functional IRs 
are good in that their variables are immutable, and they 
only allow atoms as function arguments.



Simple CPS/L3 
optimizations



Rewriting optimizations

The rewriting optimizations for CPS/L3 are specified as a set 
of rewriting rules of the form T ⇝opt T′. These rules rewrite a 
CPS/L3 term T to an equivalent — but hopefully more 
efficient — term T′.



Optimization contexts

Optimization rewriting rules cannot be applied anywhere, 
but only in specific locations. For example, it would be 
incorrect to try to rewrite the parameter list of a function. 
This constraint can be captured by specifying all the 
contexts in which it is valid to perform a rewrite, where a 
context is a term with a single hole denoted by . 
The hole of a context C can be plugged with a term T, an 
operation written as C[T]. 
For example, if C is (if  ct cf), then C[(< x y)] is 
(if (< x y) ct cf).



Optimization contexts

The optimization contexts for CPS/L3 are generated by the 
following grammar: 
Copt ::=  
  | (letl ((n l)) Copt) 
  | (letp ((n (p n1 …))) Copt) 
  | (letc ((c1 e1) … (ci (cnt (ni,1 …) Copt)) … (ck ek)) e) 
  | (letc ((c1 e1) …) Copt) 
  | (letf ((f1 e1) … (fi (fun (ni,1 …) Copt)) … (fk ek)) e) 
  | (letf ((f1 e1) …) Copt)



Optimization relation

Using the optimization rewriting rules — presented later — 
and the optimization contexts, it is possible to specify the 
optimization relation    opt that rewrites a term to an 
optimized version: 

Copt[T] ⇒opt Copt[T′]  where  T ⇝opt T′

⇒



(Non-)shrinking rules
We can distinguish two classes of rewriting rules: 

1. shrinking rules rewrite a term to an equivalent but 
smaller one, 

2. non-shrinking rules rewrite a term to an equivalent 
but potentially larger one. 

Shrinking rules can be applied at will, possibly until the term 
is fully reduced, while non-shrinking rules cannot, as they 
could result in infinite expansion. Heuristics must be used to 
decide when to apply non-shrinking rules. 
Except for (non-linear) inlining, all optimizations we will see 
are shrinking.



Dead code elimination
Dead code elimination removes all code that neither 
performs side effects nor produces a value used later. 
(letl ((n l)) e) 
  ⇝opt e [if n is not free in e] 
(letp ((n (p n1 …))) e) 
  ⇝opt e [if n is not free in e and  
                   p ∉ { byte-read, byte-write, block-set! }] 
(letf ((n1 f1) … (ni fi) … (nk fk)) e) 
  ⇝opt (letf ((n1 f1) … (nk fk)) e) 
  [if ni is not free in {f1, …, fi-1, fi+1, … fk, e}] 

The rule for continuations is similar to the one for functions.



Dead code elimination

The rewriting rules to eliminate dead functions does not 
eliminate dead but mutually-recursive functions. 
To handle them, one must start from the main expression of 
the program, and identify all functions transitively reachable 
from it. All unreachable functions are dead. 
The rule for continuations has the same problem, which 
admits a similar solution. The only difference is that, 
continuations being local to functions, the reachability 
analysis can start in function bodies.



CSE

Common subexpression elimination (CSE) avoids the 
repeated evaluation of a single expression. 
(letl ((n1 l)) Copt[(letl ((n2 l)) e)]) 
  ⇝opt (letl ((n1 l)) Copt[e{n2→n1}]) 
(letp ((n1 (+ a1 a2))) 
  Copt[(letp ((n2 (+ a1 a2))) e)]) 
  ⇝opt (letp ((n1 (+ a1 a2))) Copt[e{n2→n1}]) 
etc.



CSE
These simple rules for common subexpression elimination 
are also a bit too naïve and miss some opportunities 
because of scoping. 
For example, the common subexpression (+ y z) below is 
not optimized by them: 
(letc ((c1 (cnt () 
             (letp ((x1 (+ y z))) 
                …))) 
       (c2 (cnt () 
             (letp ((x2 (+ y z))) 
                …)))) 
  …)



η-reduction
Variants of the standard η-reduction can be performed to 
remove redundant definitions. 
(letc ((c1 e1) … 
       (ci (cnt (a1 …) (appc d a1 …))) … 
       (ck ek)) 
  e) 
  ⇝opt (letc ((c1 e1{ci→d}) … (ck ek{ci→d})) e{ci→d}) 
(letf ((n1 f1) … 
       (ni (fun (c a1 …) (appf g c a1 …)) … 
       (nk fk)) 
  e) 
  ⇝opt (letf ((n1 f1{ni→g}) … (nk fk{ni→g})) e{ni→g})



Constant folding (1)

Constant folding replaces a constant expression by its 
value. Example for addition: 
(letl ((n1 l1)) 
  Copt[(letl ((n2 l2)) 
    C′opt[(letp ((n3 (+ n1 n2))) e)])]) 
  ⇝opt (letl ((n1 l1)) 
        Copt[(letl ((n2 l2)) 
          C′opt[(letl ((n3 l1+l2)) e)])]) 

Similar rules exist for other arithmetic primitives.



Constant folding (2)
Primitives appearing in conditional expressions are also 
amendable to constant folding, for example: 
(if (= n n) ct cf) 
  ⇝opt (appc ct) 
(if (!= n n) ct cf) 
  ⇝opt (appc cf) 
(letl ((n1 l1)) 
  Copt[(letl ((n2 l2)) 
       C′opt[(if (= n1 n2) ct cf)])]) 
  ⇝opt (letl ((n1 l1)) 
        Copt[(letl ((n2 l2)) 
              C′opt[(appc ct)])])  [if l1 = l2] 
etc.



Neutral/absorbing elements
Uses of neutral and absorbing elements of arithmetic 
primitives can be simplified. For multiplication, this is 
expressed by the following rules: 
(letl ((n1 0)) Copt[(letp ((n (* n1 n2))) e)]) 
  ⇝opt (letl ((n1 0)) Copt[e{n→n1}]) 
(letl ((n2 0)) Copt[(letp ((n (* n1 n2))) e)]) 
  ⇝opt (letl ((n2 0)) Copt[e{n→n2}]) 
(letl ((n1 1)) Copt[(letp ((n (* n1 n2))) e)]) 
  ⇝opt (letl ((n1 1)) Copt[e{n→n2}]) 
(letl ((n2 1)) Copt[(letp ((n (* n1 n2))) e)]) 
  ⇝opt (letl ((n2 1)) Copt[e{n→n1}]) 

Similar rules exist for other arithmetic operators.



Block primitives
Block primitives are harder to optimize, because block 
elements can be modified. 
However, some blocks used by the compiler, e.g. to 
implement closures, are known to be constant once 
initialized. This makes rewritings like the following possible: 
(letp ((b (block-alloc-k s))) 
  Copt[(letp ((t (block-set! b i v))) 
    C′opt[(letp ((n (block-get b i))) e)])]) 
  ⇝opt (letp ((b (block-alloc-k s))) 
        Copt[(letp ((t (block-set! b i v))) 
          C′opt[e{n→v}])]) 
[when tag k identifies a block that is not modified after 
initialization, e.g. a closure block]



Exercise

CPS/L3 contains the following block primitives: 
– block-alloc-n size 
– block-tag block 
– block-size block 
– block-get block index 
– block-set! block index value 

Informally describe three rewriting optimizations that could 
be performed on these primitives, and in which conditions 
they could be performed.



CPS/L3 inlining



Shrinking inlining

A non-recursive continuation or function that is applied 
exactly once — i.e. used in a linear fashion — can always be 
inlined without making the code grow: 
(letf ((f1 e1) … (fi (fun (ci ni,1 …) ei)) … (fk ek)) 
  Copt[(appf fi c m1 …)]) 
  ⇝opt (letf ((f1 e1) … (fk ek)) 
        Copt[ei{ci→c}{ni,1→m1}…]) 
  [when fi is not free in Copt, e1, …, en] 

The rule for continuations is similar.



General inlining
Non-linear inlining can also be performed trivially in CPS/L3, 
either for continuation or for functions (illustrated here): 
(letf (… (fi (fun (ci ni,1 …) ei)) …) 
  Copt[(appf fi c m1 …)]) 
  ⇝opt (letf (… (fi (fun (ci ni,1 …) ei)) …) 
       Copt[ei{ci→c}{ni,1→m1}…]) 

(To preserve the uniqueness of names, fresh versions of 
bound names should be created during inlining.) 
The problem of these rules is that they are not shrinking and 
rewriting does not even terminate with recursive 
continuations or functions.



Inlining heuristics (1)

Since non-shrinking inlining cannot be performed 
indiscriminately, heuristics are used to decide whether a 
candidate function should be inlined at a given call site. 
These heuristics typically combine several factors, like: 

– the size of the candidate function — smaller ones should 
be inlined more eagerly than bigger ones, 

– the number of times the candidate is called in the whole 
program — a function called only a few times should be 
inlined, 

(continued on next slide)



Inlining heuristics (2)

– the nature of the candidate — not much gain can be 
expected from the inlining of a recursive function, 

– the kind of arguments passed to the candidate, and/or 
the way these are used in the candidate — constant 
arguments could lead to further reductions in the inlined 
candidate, especially if it combines them with other 
constants, 

– etc.



Exercise

Imagine an imperative intermediate language equipped 
with a return statement to return from the current function 
to its caller. 

1. Describe the problem that would appear when inlining 
a function containing such a return statement. 

2. Explain how a return statement could be encoded in 
CPS/L3 and why such an encoding would not suffer 
from the above problem.



CPS/L3 
“contification”



Contification

Contification is the name generally given to an optimization 
that transforms functions into (local) continuations. 
When applicable, this transformation is interesting because 
it transforms expensive functions — compiled as closures — 
to inexpensive continuations — compiled as code blocks.



Contification example

Contification can for example transform the loop function in 
the L3 example below to a local continuation, leading to 
efficient compiled code. 
(def fact 
  (fun (x) 
    (rec loop ((i 1) (r 1)) 
      (if (> i x) 
          r 
          (loop (+ i 1) (* r i))))))



Contifiability

A CPS/L3 function is contifiable if and only if it always returns 
to the same location, because then it does not need a return 
continuation. 
For a non-recursive function, this condition is satisfied if and 
only if that function is only used in appf nodes, in function 
position, and always passed the same return continuation. 
For recursive functions, the condition is slightly more 
involved — see later.



Non-recursive contification
The contification of the non-recursive function f is given by: 
(letf ((f (fun (c a1 …) e))) 
  Copt[C′opt[(appf f c0 n1,1 …), (appf f c0 n2,1, …), …]]) 
  ⇝opt Copt[(letc ((m (cnt (a1 …) e{c→c0}))) 
          C′opt[(appc m n1,1 …), (appc m n2,1 …), …])] 

where f does not appear free in either Copt or C′opt, and C′opt 
is the smallest (multi-hole) context enclosing all applications 
of f. It ensures that the scope of m is as small as possible, 
and therefore that m obeys the scoping rules for 
continuations. 
In this rule, c0 is the (single) return continuation that is 
passed to function f.



Recursive contifiability

A set of mutually-recursive functions F = { f1, …, fn } is 
contifiable — which we write Cnt(F) — if and only if every 
function in F is always used in one of the following two ways: 

1. applied to a common return continuation, or 
2. called in tail position by a function in F. 

Intuitively, this ensures that all functions in F eventually 
return through the common continuation.



Example
As an example, functions even and odd in the CPS/L3 
translation of the following L3 term are contifiable: 
(letrec 
   ((even (fun (x) 
            (if (= 0 x) #t (odd (- x 1))))) 
    (odd (fun (x) 
            (if (= 0 x) #f (even (- x 1)))))) 
  (even 12)) 

Cnt(F = {even, odd}) is satisfied since: 
– the single use of odd is a tail call from even ∈ F, 
– even is tail-called from odd ∈ F and called with the 

continuation of the letrec statement — the common 
return continuation c0 for this example.



Recursive contification

Given a set of mutually-recursive functions 
(letf ((f1 e1) (f2 e2) … (fn en)) 
  e) 

the condition Cnt(F) for some F ⊆ { f1, …, fn } can only be true 
if all the non tail calls to functions in F appear either: 

– in the term e, or 
– in the body of exactly one function fi ∉ F. 

Therefore, two separate rewriting rules must be defined, 
one per case.



Recursive contification #1
When all non tail calls to functions in F = { f1, …, fi } appear in 
the body of the letf, and Cnt(F) holds, contification is 
performed by the following rewriting: 
(letf ((f1 (fun (c1 a1,1 …) e1)) … (fn …)) 
  Copt[e])  
  ⇝opt (letf ((fi+1 (fun (ci+1 ai+1,1 …) ei+1))…(fn …)) 
       Copt[(letc ((m1 (cnt (a1,1 …) 
                       e1*{c1→c0})) …) 
            e*)]) 

where f1, …, fi do not appear free in Copt and e is minimal. 
Note: the term t* is t with all applications of contified 
functions transformed to continuation applications.



Recursive contification #2
When all non tail calls to functions in F = { f1, …, fi } appear in 
the body of the function fn, and Cnt(F) holds, contification is 
performed by the following rewriting: 
(letf ((f1 (fun (c1 a1,1 …) e1)) … 
       (fn (fun (cn an,1 …) Copt[en]))) e) 
  ⇝opt (letf ((fi+1 (fun (ci+1 ai+1,1 …) ei+1)) … 
            (fn (fun (cn an,1 …) 
                Copt[(letc ((m1 (cnt (a1,1 …) 
                                e1*{c1→c0})) 
                          …) 
                     en*)]))) e) 

where f1, …, fi do not appear free in Copt and en is minimal.



Contifiable subsets

Given a letf term defining a set of functions F = { f1, …, fn }, 
the subsets of F of potentially contifiable functions are 
obtained by: 

1. building the tail-call graph of its functions, identifying 
the functions that call each-other in tail position, 

2. extracting the strongly-connected components of that 
graph. 

A given set of strongly-connected functions Fi ⊆ F is then 
either contifiable together, i.e. Cnt(Fi), or not contifiable at 
all — i.e. none of its subsets of functions are contifiable.


