
Tail calls
Advanced Compiler Construction

Michel Schinz — 2018–04–19

Tail calls
(and their elimination)

Functional loops

Several functional programming languages do not have an
explicit looping statement. Instead, programmers resort to
recursion to loop.
For example, the central loop of a Web server written in L3
might look like this:
(defrec web-server-loop 
 (fun () 
 (wait-for-connection) 
 (fork handle-connection) 
 (web-server-loop)))

The problem

Unfortunately, recursion is not equivalent to the looping
statements usually found in imperative languages: recursive
function calls, like all calls, consume stack space while loops
do not...
In our example, this means that the Web sever will
eventually crash because of a stack overflow — this is clearly
unacceptable!
A solution to this problem must be found...

The solution

In our example, it is obvious that the recursive call to 
web-server-loop could be replaced by a jump to the
beginning of the function. If the compiler could detect this
case and replace the call by a jump, our problem would be
solved!
This is the idea behind tail call elimination.

Tail calls
The reason why the recursive call of web-server-loop
could be replaced by a jump is that it is the last action taken
by the function :
(defrec web-server-loop 
 (fun () 
 (wait-for-connection) 
 (fork handle-connection) 
 (web-server-loop)))

Calls in terminal position — like this one — are called tail
calls.
This particular tail call also happens to target the function in
which it is defined. It is therefore said to be a recursive tail
call.

Exercise
In the L3 functions below, which calls are tail calls?
(defrec list-map 
 (fun (f l) 
 (if (list-empty? l) 
 l 
 (list-prepend 
 (f (list-head l)) 
 (list-map f (list-tail l))))))
(defrec list-fold-left 
 (fun (f z l) 
 (if (list-empty? l) 
 z 
 (list-fold-left f 
 (f z (list-head l)) 
 (list-tail l)))))

Tail call elimination

When a function performs a tail call, its own activation frame
is dead, as by definition nothing follows the tail call.
Therefore, it is possible to first free the activation frame of a
function about to perform such a call, then load the
parameters for the call, and finally jump to the function’s
code.
This technique is called tail call elimination (or
optimization), here abbreviated TCE.

TCE example

Consider the following function definition and call:
(defrec sum 
 (fun (z l) 
 (if (list-empty? l) 
 z 
 (sum (+ z (list-head l)) 
 (list-tail l))))) 
(sum 0 (list-make-3 1 2 3))

How does the stack evolve, with and without tail call
elimination?

TCE example

0
(1 2 3)

time

TCE example

0
(1 2 3)

0
(1 2 3)

1
(2 3)

time

TCE example

0
(1 2 3)

0
(1 2 3)

1
(2 3)

0
(1 2 3)

1
(2 3)
3
(3)

time

TCE example

0
(1 2 3)

0
(1 2 3)

1
(2 3)

0
(1 2 3)

1
(2 3)
3
(3)

0
(1 2 3)

1
(2 3)
3
(3)
6
()

time

TCE example

0
(1 2 3)

time

With tail call elimination, the dead activation frames are
freed before the tail call, resulting in a stack of constant size.

TCE example

0
(1 2 3)

1
(2 3)

time

With tail call elimination, the dead activation frames are
freed before the tail call, resulting in a stack of constant size.

TCE example

0
(1 2 3)

1
(2 3)

3
(3)

time

With tail call elimination, the dead activation frames are
freed before the tail call, resulting in a stack of constant size.

TCE example

0
(1 2 3)

1
(2 3)

3
(3)

6
()

time

With tail call elimination, the dead activation frames are
freed before the tail call, resulting in a stack of constant size.

Tail call optimization?

Tail call elimination is more than just an optimization!
Without it, writing a program that loops endlessly using
recursion and does not produce a stack overflow is simply
impossible.
For that reason, full tail call elimination is actually required in
some languages, e.g. Scheme.
In other languages, like C, it is simply an optimization
performed by some compilers in some or all cases.

Tail calls in L3

Translation of L3 tail calls
The “simple” translation from CL3 to CPS/L3 does not handle
tail calls specially, and their translation is therefore sub-
optimal.
For example, the CL3 term:
(letrec ((f (fun (g) (g)))) f)

gets translated to the CPS/L3 term:
(letf ((f (fun (c g) 
 (letc ((j (cnt (r) 
 (appc c r)))) 
 (appf g j))))) 
 f)

in which the tail call from f to g returns to f — since its return
continuation is j — instead of directly returning to its caller.

Translation of L3 tail calls
The improved translation from CL3 to CPS/L3 does handle
tail calls specially, and optimizes them correctly.
With it, the same CL3 term as before:
(letrec ((f (fun (g) (g)))) f)

gets translated to the CPS/L3 term:
(letf ((f (fun (c g) (appf g c)))) 
 f)

in which the tail call to g is optimized, in that it gets the same
return continuation c as f itself.

Translation of L3 tail calls
The improved translation uses a different translation
function for terms that are in tail position (⟦·⟧T), and uses it to
translate function application efficiently.
Non-tail calls are handled by ⟦·⟧N, as follows:
⟦(e e1 e2 …)⟧N C = 
 ⟦e⟧N(λv ⟦e1⟧N(λv1 ⟦e2⟧N(λv2 … 
 (letc ((c (cnt (r) C[r]))) 
 (appf v c v1 v2 …)))))

while tail calls are handled by ⟦·⟧T, as follows:
⟦(e e1 e2 …)⟧T c = 
 ⟦e⟧N(λv ⟦e1⟧N(λv1 ⟦e2⟧N(λv2 … 
 (appf v c v1 v2 …))))

Translation of CPS/L3 tail calls

In the L3 compiler, CPS/L3 is just an intermediate language,
not the final target language.
Therefore, when translating CPS/L3 to virtual machine code,
tail calls must be identified and translated appropriately.
Their identification is trivial: a CPS/L3 function call is a tail
call iff it gets the return continuation of its enclosing
function.

TCE in
uncooperative
environments

TCE in various environments

When generating assembly language, it is easy to perform
TCE, as the target language is sufficiently low-level to
express the deallocation of the activation frame and the
following jump.
When targeting higher-level languages, like C or the JVM,
this becomes difficult — although recent VMs like .NET’s
support tail calls. Let’s explore several techniques that have
been developed to perform TCE in such contexts.

Benchmark program
To illustrate how the various techniques work, we will use a
benchmark program in C that tests whether a number is
even, using two mutually tail-recursive functions.
When no technique is used to manually eliminate tail calls, it
looks as follows. And unless the C compiler performs tail call
elimination — like GCC does with full optimization — it
crashes with a stack overflow at run time.
int even(int x){return x == 0 ? 1 : odd(x-1);}
int odd(int x){return x == 0 ? 0 : even(x-1);}
int main(int argc, char* argv[]) {
 printf("%d\n", even(300000000)); 
}

Single-function approach

The single function approach consists in compiling the
whole program to a single function of the target language.
This makes it possible to compile tail calls to simple jumps
within that function, and other calls to recursive calls to it.
This technique is rarely applicable in practice, due to
limitations in the size of functions of the target language.

Single function in C
typedef enum { fun_even, fun_odd } fun_id; 
int wholeprog(fun_id fun, int x) { 
 switch (fun) {  
 case fun_even: goto even;  
 case fun_odd: goto odd;  
 } 
 
 even: 
 if (x == 0) return 1;  
 x = x - 1; 
 goto odd; 
 odd: 
 if (x == 0) return 0;  
 x = x - 1; 
 goto even; 
} 
int main(int argc, char* argv[]) {  
 printf("%d\n", wholeprog(fun_even, 300000000)); 
}

Trampolines

With trampolines, functions never perform tail calls directly.
Rather, they return a special value to their caller, informing it
that a tail call should be performed. The caller performs the
call itself.
For this scheme to work, it is necessary to check the return
value of all functions, to see whether a tail call must be
performed. The code which performs this check is called a
trampoline.

Trampolines in C
typedef void* (*fun_ptr)(int); 
struct { fun_ptr fun; int arg; } resume; 
void* even(int x) {  
 if (x == 0) return (void*)1;  
 resume.fun = odd;  
 resume.arg = x - 1;  
 return &resume;  
} 
void* odd(int x) {  
 if (x == 0) return (void*)0;  
 resume.fun = even;  
 resume.arg = x - 1;  
 return &resume;  
} 
int main(int argc, char* argv[]) { 
 void* res = even(300000000);  
 while (res == &resume)  
 res = (resume.fun)(resume.arg);  
 printf("%d\n",(int)res);  
}

Extended trampolines

Extended trampolines trade some of the space savings of
standard trampolines for speed.
Instead of returning to the trampoline on every tail call, the
number of successive tail calls is counted at run time, using
a tail call counter passed to every function.
When that number reaches a predefined limit, a non-local
return is performed to transfer control to a trampoline
“waiting” at the bottom of the chain, thereby reclaiming
several activation frames in one go.

Non-local returns in C
Extended trampolines are more efficient when a non-local
return is used to free dead stack frames.
In C, non-local returns can be performed using the standard
functions setjmp and longjmp, which can be seen as a
form of goto that works across functions:

– setjmp(b) saves its calling environment in b, and
returns 0,

– longjmp(b,v) restores the environment stored in b, and
proceeds like if the call to setjmp had returned v
instead of 0.

In the following slides, we use _setjmp and _longjmp,
which do not save and restore the signal mask and are
therefore much more efficient.

Extended trampolines in C
typedef int (*fun_ptr)(int, int);  
struct { fun_ptr fun; int arg; } resume; 
jmp_buf jmp_env;  
 
int even(int tcc, int x) {  
 if (tcc > TC_LIMIT) {  
 resume.fun = even;  
 resume.arg = x;  
 _longjmp(jmp_env, -1);  
 } 
 return (x == 0) ? 1 : odd(tcc + 1, x - 1); 
} 
int odd(int tcc, int x) { /* similar to even */ } 
 
int main(int argc, char* argv[]) { 
 int res = (_setjmp(jmp_env) == 0)  
 ? even(0, 300000000)  
 : (resume.fun)(0, resume.arg);  
 printf("%d\n",res);  
}

Baker's technique

(Henry) Baker’s technique consists in first transforming the
whole program to continuation-passing style (CPS).
One important property of CPS is that all calls are tail calls.
Consequently, it is possible to periodically shrink the whole
stack using a non-local return.

Baker's technique in C
typedef void (*cont)(int); 
typedef void (*fun_ptr)(int, cont);  
int tcc = 0; 
struct { fun_ptr fun; int arg; cont k; } resume; 
jmp_buf jmp_env;  
void even_cps(int x, cont k) {  
 if (++tcc > TC_LIMIT) {  
 tcc = 0; 
 resume.fun = even_cps;  
 resume.arg = x;  
 resume.k = k;  
 _longjmp(jmp_env, -1);  
 } 
 if (x == 0) (*k)(1); else odd_cps(x - 1, k); 
} 
void odd_cps(int x, cont k) { /* similar to even_cps */ } 
int main(int argc, char* argv[]) { 
 if (_setjmp(jmp_env) == 0) even_cps(300000000, main_1); 
 else (resume.fun)(resume.arg, resume.k); 
} 
void main_1(int val) { printf("%d\n", val); exit(0); }

Benchmark results
The programs presented earlier were compiled with clang
v503.0.38 and two different optimization settings (-O0 and 
-O3). The normalized running times observed on an Intel
Core i5 are presented below.
Notice that the initial version compiled without optimization
produces a stack overflow, hence the absence of timing.

Initial version
Single function

Baker's technique
Extended trampolines

Trampolines

0 10 20 30

11,4

3,9

5,9

1

1

21,6

15,5

13,9

11,4

No optimizations Full optimization

Techniques summary
1 2 3 4 5 6 7 8None

1 2 3 4Single function

1 2 2 2 2 3 3 4Trampolines

Baker's technique 1 2 3 4 5 6 7 n

Ext. trampolines 1 2 3 4 3 4 5 6

non-tail
tail

calls
normal
trampoline
non-local trampoline

returns
d

stack frames

d: depth

