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Intermediate representations

The term intermediate representation (IR) or intermediate language 
designates the data-structure(s) used by the compiler to represent the 
program being compiled. 
Choosing a good IR is crucial, as many analyses and transformations (e.g. 
optimizations) are substantially easier to perform on some IRs than on others. 
Most non-trivial compilers actually use several IRs during the compilation 
process, and they tend to become more low-level as the code approaches its 
final form.



Code example

To illustrate the differences between the various intermediate representations, 
we will use a program fragment to compute and print the greatest common 
divisor (GCD) of 2016 and 714. 
The L3 version of that fragment could be: 
(rec loop ((x 2016) 
           (y 714)) 
     (if (= 0 y) 
         (int-print x) 
         (loop y (% x y))))



IR #1: 
CPS/L3



CPS/L3: a functional IR

A functional IR is an intermediate representation that is close to a (very) 
simple functional programming language. 
Typical functional IRs have the following characteristics: 

– all primitive operations (e.g. arithmetic operations) are performed on 
atomic values (variables or constants), and the result of these operations is 
always named, 

– variables cannot be re-assigned. 
As we will see later, some of these characteristics are shared with more 
mainstream IRs, like SSA. 
CPS/L3 is the functional IR used by the L3 compiler.



Local continuations

A crucial notion in CPS/L3 is that of local continuation. 
A local continuation is similar to a (local) function but with the following 
restrictions: 

– continuations are not "first class citizens": they cannot be stored in variables 
or passed as arguments — the only exception being the return continuation 
(described later), 

– continuations never return, and must therefore be invoked in tail position. 
These restrictions enable continuations to be compiled much more efficiently 
than normal functions. This is the only reason why continuations exist as a 
separate construct.



Uses of continuations

Continuations are used for two purposes in CPS/L3: 
1. To represent code blocks which can be “jumped to” from several 

locations, by invoking the continuation. 
2. To represent the code to execute after a function call. For that purpose, 

every function gets a continuation as argument, which it must invoke with 
its return value.



CPS/L3 grammar
T ::= (letp ((N (P A …))) T) 
  | (letc ((N (cnt (N …) T))) T) 
  | (letf ((N (fun (N N …) T)) …) T) 
  | (appc A A …) 
  | (appf A N A …) 
  | (if (C A A) N N) 
  | (halt A) 
N ::= name 
L ::= literal (e.g. integer, character, boolean or unit) 
A ::= N | L 
P ::= + | - | * | / | % | … 
C ::= < | <= | = | …

atom



CPS/L3 local binding

(letp ((n (p a1 …))) e) 
Binds the name n to the result of the application of primitive p to the value of 
a1, … in expression e. 
The primitive p cannot be a logical (i.e. boolean) primitive, as such primitives 
are only meant to be used in conditional expressions — see later.



CPS/L3 functions

(letf ((f1 (fun (r1 n1,1…) b1)) …) e) 
Binds the names f1, … to functions with arguments n1,1, … and return 
continuation r1, … in expression e. 
The functions can be mutually recursive. 
The return continuation takes a single argument: the return value. Applying it 
is interpreted as returning from the function. 
(appf f r a1 …) 
Applies the function bound to f to return continuation r and arguments a1, … 
The name r must either be bound by an enclosing letc or be the name of the 
return continuation of the current function. 



CPS/L3 local continuations
(letc ((c1 (cnt (n1,1 …) b1)) …) e) 
Binds the names c1,… to local continuations with arguments n1,1, … and body 
b1,… in expression e. 
Interpretation: similar to a local function that does not return. 
(appc c a1 …) 
Applies the continuation bound to c to the value of a1, … The name c must 
either be bound by an enclosing letc or be the name of the return 
continuation of the current function. 
Interpretation: 

– if c designates a local continuation, jump to it (with arguments), 
– if c designates the current return continuation, return from the current 

function, with the given return value.



CPS/L3 control constructs

(if (p a1 a2) ct cf) 
Tests whether the condition p is true for the value of a1 and a2, then applies 
continuation ct if it is, or cf if it isn’t. Both ct and cf must be parameterless 
continuations. 
The primitive p must be a logical primitive. 
Note: if is a branching form of continuation application for parameterless 
continuations. It is therefore a conditional version of appc. 
(halt a) 
Halts program execution, exiting with the value of a, which must be an 
integer.



Continuation scopes

The scoping rules of CPS/L3 are mostly the “obvious ones”. The only exception 
is the rule for continuation variables, which are not visible in nested functions! 
For example, in the following code: 
(letc ((c0 (cnt (r) (appf print r)))) 
  (letf ((f (fun (c1 x) 
             (letp ((t (+ x x))) 
               (c1 t))))))) 
c0 is not visible in the body of f! 
This guarantees that continuations are truly local to the function that defines 
them, and can therefore be compiled efficiently.



CPS/L3 syntactic sugar

To make CPS/L3 programs easier to read and write, we allow the collapsing of 
nested occurrences of letp and letc expressions to a single let* expression. 
We also allow the elision of appf and appc in applications. Example:

(letp ((c1 (+ 1 2))) 
  (letp ((c2 (+ 2 3))) 
    (letp ((c3 (+ c1 c2))) 
      … (appf f c3))))

(let* ((c1 (+ 1 2)) 
       (c2 (+ 2 3)) 
       (c3 (+ c1 c2))) 
  … (f c3))

⇕



GCD in CPS/L3

The CPS/L3 version of the GCD program fragment looks as follows: 
(letc ((loop 
        (cnt (x y) 
          (let* ((ct (cnt () 
                       (appf print x))) 
                 (cf (cnt () 
                       (letp ((t (% x y))) 
                         (appc loop y t))))) 
            (if (= y 0) ct cf))))) 
    (appc loop 2016 714)) 

(To simplify, no return continuation is passed to print).



Translation of 
CL3 to CPS/L3



Translating CL3 to CPS/L3

The translation from CL3 to CPS/L3 is specified as a function denoted by ⟦·⟧ 
and taking two arguments: 

1. T, the CL3 term to be translated, 
2. C, the translation context, a CPS/L3 term containing a hole into which an 

atom containing the value of the translated term has to be plugged. 
This function is written in a “mixfix” notation, as follows: 
⟦T⟧ C 

and must return a CPS/L3 term that includes both: 
1. the translation of the CL3 term T, and 
2. the context C with its hole plugged by an atom containing the value of 

(the translation of) T.



Translation context

The translation context is a partial CPS/L3 term representing the translation of 
the CL3 expression surrounding the one being translated. 
It is partial in the sense that it contains a single hole, representing an as-yet-
unknown atom. 
This hole is meant to be plugged eventually by the translation function, once it 
knows the atom in question.



Translation context

In what follows, and in the implementation, the translation context will be 
represented as a meta-function with a single argument — the hole. 
For example, the following meta-function represents a partial CPS/L3 halt 
node where the argument of halt is not yet known: 
λx(halt x) 

A context being a meta-function, its hole can be plugged simply by function 
application at the meta-level. For exemple, assuming the above context is 
called C, its hole can be plugged with the atom 1 as follows: 
C[1] 

producing the complete CPS/L3 term (halt 1).



The translation in Scala

In Scala — the meta-language in the L3 project — the translation function ⟦·⟧ is 
defined as a function with the following profile: 
def CL3ToCPS(t: CL3Tree, 
             c: Atom ⇒ CPSTree): CPSTree 

In the body of that function, plugging the context c with an atom bound to a 
Scala value named a is done using Scala function application: 
c(a)



CL3 to CPS/L3 translation (1)

Note: in the following expressions, all underlined names are fresh. 
⟦a⟧ C where a is an atom (i.e. name or literal) = 
  C[a] 
⟦(let ((n1 e1) (n2 e2) …) e)⟧ C = 
 ⟦e1⟧(λv1 (letp ((n1 (id v1))) 
          ⟦(let ((n2 e2) …) e)⟧ C)) 
⟦(let () e)⟧ C = 
 ⟦e⟧ C

id = identity primitive 
(returns its argument)



CL3 to CPS/L3 translation (2)

⟦(letrec ((f1 (fun (n1,1 n1,2 …) e1)) …) e)⟧ C = 
  (letf ((f1 (fun (c n1,1 n1,2 …) 
              ⟦e1⟧(λv (appc c v)))) …) 
    ⟦e⟧ C) 
⟦(e e1 e2 …)⟧ C = 
  ⟦e⟧(λv ⟦e1⟧(λv1 ⟦e2⟧(λv2 … 
    (letc ((c (cnt (r) C[r]))) 
      (appf v c v1 v2 …))))) 



CL3 to CPS/L3 translation (3)

⟦(if (@p e1 …) e2 e3)⟧ C where p is a logical primitive = 
  (letc ((c (cnt (r) C[r]))) 
    (letc ((ct (cnt () ⟦e2⟧(λv2 (appc c v2))))) 
      (letc ((cf (cnt () ⟦e3⟧(λv3 (appc c v3))))) 
        ⟦e1⟧(λv1 … (if (@p v1 …) ct cf)))))) 
⟦(if e1 e2 e3)⟧ C = 
  ⟦(if (@= e1 #f) e3 e2)⟧ C



CL3 to CPS/L3 translation (4)

⟦(@ p e1 e2 …)⟧ C where p is a logical primitive = 
  ⟦(if (@p e1 e2 …) #t #f)⟧ C 
⟦(@ p e1 e2 …)⟧ C where p is not a logical primitive = 
  left as an exercise 
⟦(halt e)⟧ C = 
  left as an exercise



Initial context

In which context should a complete program be translated? 
The simplest answer is a context that halts execution with an exit code of 0 
(signalling no error), that is: 
λv (halt 0) 

An alternative would be to do something with the value v produced by the 
whole program, e.g. use it as the exit code instead of 0, print it, etc.



Exercise

Translate the following L3 expression: 
(f 1 2) 

in the initial context, λv (halt 0). 



Better translation of 
CL3 to CPS/L3



Improving the translation

The translation presented before has two shortcomings: 
1. it produces terms containing useless continuations, and 
2. it produces suboptimal CPS/L3 code for some conditionals. 

One solution to improve the translation is to define several different 
translations depending on the source (i.e. L3) context in which the expression 
to translate appears.



Useless continuations

The first problem can be illustrated with the CL3 term: 
(letrec ((f (fun (g) (g)))) f) 

which — in the empty context — gets translated to: 
(letf ((f (fun (c g) 
            (letc ((j (cnt (r) (appc c r)))) 
              (appf g j))))) 
  f) 

instead of the equivalent and more compact: 
(letf ((f (fun (c g) (appf g c)))) 
  f)



Suboptimal conditionals (1)

The second problem can be illustrated with the CL3 term: 
(if (if a b #f) x y) 

which, in the empty context, gets translated to: 
(let* ((ci1 (cnt (v1) v1)) 
       (ct1 (cnt () (appc ci1 x))) 
       (cf1 (cnt () (appc ci1 y))) 
       (ci2 (cnt (v2) (if (= v2 #f) cf1 ct1))) 
       (ct2 (cnt () (appc ci2 b))) 
       (cf2 (cnt () (appc ci2 #f)))) 
  (if (= a #f) cf2 ct2))



Suboptimal conditionals (2)

A much better translation for: 
(if (if a b #f) x y) 

would be: 
(let* ((ci1 (cnt (v1) v1)) 
       (ct1 (cnt () (appc ci1 x))) 
       (cf1 (cnt () (appc ci1 y))) 
       (ca1 (cnt () (if (= b #f) cf1 ct1)))) 
  (if (= a #f) cf1 ca1)) 

which immediately applies continuation cf1 if a is false.



Source contexts
These two problems have in common the fact that the translation could be 
better if it depended on the source context in which the expression to 
translate appears. 

– In the first example, the function call could be translated more efficiently 
because it appears as the last expression of the function (i.e. it is in tail 
position). 

– For the second example, the nested if expression could be translated more 
efficiently because it appears in the condition of another if expression and 
one of its branches is a simple boolean literal (here #f). 

Therefore, instead of having one translation function, we should have several: 
one per source context worth considering!



A better translation

To solve the two problems, we split the single translation function into three 
separate ones: 

1. ⟦·⟧N C, taking as before a term to translate and a context C, whose hole 
must be plugged with an atom containing the value of the term.  

2. ⟦·⟧T c, taking a term to translate and the name of a one-parameter 
continuation c. This continuation is to be applied to the value of the term. 

3. ⟦·⟧C ct cf, taking a term to translate and the names of two parameterless 
continuations, ct and cf. The continuation ct is to be applied when the term 
evaluates to a true value, while the continuation cf is to be applied when it 
evaluates to a false value.



The non-tail translation

⟦·⟧N is called the non-tail translation as it is used in non-tail contexts. That is, 
when the work that has to be done once the term is evaluated is more 
complex than simply applying a continuation to the term’s value.



The non-tail translation

For example, the arguments of a primitive are always in a non-tail context, 
since once they are evaluated, the primitive has to be applied on their value: 
⟦(@ p e1 e2 …)⟧N C where p is not a logical primitive = 
  ⟦e1⟧N(λv1 ⟦e2⟧N(λv2… 
    (letp ((n (p v1 v2 …))) 
      C[n])))



The tail translation

The tail translation ⟦·⟧T is used whenever the context passed to the simple 
translation has the form λv (appc c v). It gets as argument the name of the 
continuation c to which the value of expression should be applied.



The tail translation

For example, the previous translation of function definition: 
⟦(letrec ((f1 (fun (n1,1 n1,2 …) e1)) …) e)⟧ C = 
  (letf ((f1 (fun (c n1,1 n1,2 …) 
              ⟦e1⟧(λv (appc c v)))) …) 
    ⟦e⟧ C) 

becomes: 
⟦(letrec ((f1 (fun (n1,1 n1,2 …) e1)) …) e)⟧N C = 
  (letf ((f1 (fun (c n1,1 n1,2 …) 
              ⟦e1⟧T c)) …) 
    ⟦e⟧N C)



The cond translation

The cond translation ⟦·⟧C is used whenever the term to translate is a condition 
to be tested to decide how execution must proceed. It gets two continuations 
names as arguments: the first is to be applied when the condition is true, while 
the second is to be applied when it is false.



The cond translation

This translation is used to handle the condition of an if expression: 
⟦(if e1 e2 e3)⟧N C = 
  (letc ((c (cnt (r) C[r]))) 
    (letc ((ct (cnt () ⟦e2⟧T c))) 
      (letc ((cf (cnt () ⟦e3⟧T c))) 
        ⟦e1⟧C ct cf))))



The cond translation

Having a separate translation for conditional expressions makes the efficient 
compilation of conditionals with literals in one of their branch possible: 
⟦(if e1 e2 #f)⟧C ct cf = 
  (letc ((ac (cnt () ⟦e2⟧C ct cf))) 
    ⟦e1⟧C ac cf) 
⟦(if e1 #f #t)⟧C ct cf = 
    ⟦e1⟧C cf ct 
…and so on for all conditionals with at least one constant branch.



The better translation in Scala

In the compiler, the three translations are simply three mutually-recursive 
functions, with the following profiles: 
def nonTail(t: CL3Tree) 
           (c: Atom ⇒ CPSTree): CPSTree 
def tail(t: CL3Tree, 
         c: Symbol): CPSTree 
def cond(t: CL3Tree, 
         ct: Symbol, 
         cf: Symbol): CPSTree



IR #2: 
standard RTL/CFG



Register-transfer language

A register-transfer language (RTL) is a kind of intermediate representation in 
which most operations compute a function of several virtual registers (i.e. 
variables) and store the result in another virtual register. 
For example, the instruction adding variables y and z, storing the result in x 
could be written x ← y + z. 
Such instructions are sometimes called quadruples, because they typically 
have four components: the three variables (x, y and z here) and the operation 
(+ here). 
RTLs are very close to assembly languages, the main difference being that the 
number of virtual registers is usually not bounded.



Control-flow graph

A control-flow graph (CFG) is a directed graph whose nodes are the 
individual instructions of a function, and whose edges represent control-flow. 
More precisely, there is an edge in the CFG from a node n1 to a node n2 if and 
only if the instruction of n2 can be executed immediately after the instruction 
of n1.



RTL/CFG

RTL/CFG is the name given to intermediate representations where each 
function of the program is represented as a control-flow graph whose node 
contain RTL instructions. 
This kind of representation is very common in the later stages of compilers, 
especially those for imperative languages.



RTL/CFG example
Computation of the GCD of 2016 and 714 in a typical RTL/CFG representation.

y == 0

t ← y

y ← x % y

x ← t

print x

y ← 714

x ← 2016



Basic blocks

A basic block is a maximal sequence of instruction for which control can only 
enter through the first instruction of the block and leave through the last. 
Basic blocks are sometimes used as the nodes of the CFG, instead of 
individual instructions. This has the advantage of reducing the number of 
nodes in the CFG, but also complicates data-flow analyses.



RTL/CFG example
The same examples as before, but with basic blocks instead of individual 
instructions.

y == 0

t ← y 
y ← x % y 

x ← t

print x

x ← 2016 
y ← 714



RTL/CFG issues

One problem of RTL/CFG is that even very simple optimizations (e.g. constant 
propagation, common-subexpression elimination) require data-flow analyses. 
This is because a single variable can be assigned multiple times. 
Is it possible to improve RTL/CFG so that these optimizations can be 
performed without prior analysis? 
Yes, by using a single-assignment variant of RTL/CFG!



IR #3: 
RTL/CFG in SSA form



SSA form

An RTL/CFG program is said to be in static single-assignment (SSA) form if 
each variable has only one definition in the program. 
That single definition can be executed many times when the program is run — 
if it is inside a loop — hence the qualifier static. 
SSA form is popular because it simplifies several optimizations and analysis, as 
we will see. 
Most (imperative) programs are not naturally in SSA form, and must therefore 
be transformed so that they are.



Straight-line code

x ← 12 
y ← 15 
x ← x + y 
y ← x + 4 
z ← x + y 
y ← y + 1

x1 ← 12 
y1 ← 15 
x2 ← x1 + y1 
y2 ← x2 + 4 
z1 ← x2 + y2 
y3 ← y2 + 1

to SSA



ɸ-functions

Join-points in the CFG — nodes with more than one predecessor — are more 
problematic, as each predecessor can bring its own version of a given name. 
To reconcile those different versions, a fictional ϕ-function is introduced at the 
join point. That function takes as argument all the versions of the variable to 
reconcile, and automatically selects the right one depending on the flow of 
control.



ɸ-functions example
not in SSA form in SSA form

y == 0

t ← y 
y ← x % y 

x ← t

print x

x ← 2016 
y ← 714

x2 ← ɸ(x1,x3) 
y2 ← ɸ(y1,y3) 

y2 == 0

t1 ← y2 
y3 ← x2 % y2 

x3 ← t1

print x2

x1 ← 2016 
y1 ← 714

All ɸ-
functions are 
evaluated in 

parallel



Evaluation of ɸ-functions
It is crucial to understand that all ɸ-functions of a block are evaluated in 
parallel, and not in sequence as the representation might suggest! 
To make this clear, some authors write ɸ-functions in matrix form, with one row 
per predecessor:

x2 ← ɸ(x1,x3) 
y2 ← ɸ(y1,y3)

(x2,y2) ← ɸ( ) instead of

In the following slides, we will usually stick to the common, linear 
representation, but keep the parallel nature of ɸ-functions in mind.

x1 y1
x3 y3



Evaluation of ɸ-functions
The following loop illustrates why ɸ-functions must be evaluated in parallel.

SSA optimized SSAnot SSA
x ← … 
y ← …

y == 0

… 
t←x 
x←y 
y←t

…

x1 ← … 
y1 ← …

x2←ɸ(x1,x3) 
y2←ɸ(y1,y3) 
y2 == 0

… 
t1←x2 
x3←y2 
y3←t1

…

x1 ← … 
y1 ← …

x2←ɸ(x1,y2) 
y2←ɸ(y1,x2) 
y2 == 0

… …



(Naïve) building of SSA form

Naïve technique to build SSA form: 
– for each variable x of the CFG, at each join point n, insert a ϕ-function of 

the form x=ϕ(x,…,x) with as many parameters as n has predecessors, 
– compute reaching definitions, and use that information to rename any use 

of a variable according to the — now unique — definition reaching it.



(Naïve) building of SSA form
CFG

x←1 
y←2 

z←x+y

y←y-1 
x←x+y

y←y+1 
x←y

y←x*2 
z←z+x

After phase 1

x←1 
y←2 

z←x+y

y←y-1  
x←x+y

y←y+1 
x←y

x←ɸ(x,x) 
y←ɸ(y,y) 
z←ɸ(z,z) 
y←x*2 
z←z+x

After phase 2

x1←1 
y1←2 

z1←x1+y1

y2←y1-1 
x2←x1+y2

y3←y1+1 
x3←y3

x4←ɸ(x2,x3) 
y4←ɸ(y2,y3) 
z2←ɸ(z1,z1) 
y5←x4*2 
z3←z2+x4



(Naïve) building of SSA form
CFG

x←1 
y←2 

z←x+y

y←y-1 
x←x+y

y←y+1 
x←y

y←x*2 
z←z+x

After phase 1

x←1 
y←2 

z←x+y

y←y-1  
x←x+y

y←y+1 
x←y

x←ɸ(x,x) 
y←ɸ(y,y) 
z←ɸ(z,z) 
y←x*2 
z←z+x

After phase 2

x1←1 
y1←2 

z1←x1+y1

y2←y1-1 
x2←x1+y2

y3←y1+1 
x3←y3

x4←ɸ(x2,x3) 
y4←ɸ(y2,y3) 
z2←ɸ(z1,z1) 
y5←x4*2 
z3←z2+x4

dead



(Naïve) building of SSA form
CFG

x←1 
y←2 

z←x+y

y←y-1 
x←x+y

y←y+1 
x←y

y←x*2 
z←z+x

After phase 1

x←1 
y←2 

z←x+y

y←y-1  
x←x+y

y←y+1 
x←y

x←ɸ(x,x) 
y←ɸ(y,y) 
z←ɸ(z,z) 
y←x*2 
z←z+x

After phase 2

x1←1 
y1←2 

z1←x1+y1

y2←y1-1 
x2←x1+y2

y3←y1+1 
x3←y3

x4←ɸ(x2,x3) 
y4←ɸ(y2,y3) 
z2←ɸ(z1,z1) 
y5←x4*2 
z3←z2+x4

dead

re
du

nd
an

t



Better building techniques

The naïve technique just presented works, in the sense that the resulting 
program is in SSA form and is equivalent to the original one. 
However, it introduces too many ϕ-functions — some dead, some redundant — 
to be useful in practice. It builds the maximal SSA form. 
Better techniques exist to translate a program to SSA form.



Strict SSA form

A program is said to be in strict SSA form if it is in SSA form and all uses of a 
variable are dominated by the definition of that variable. (In a CFG, a node n1 
dominates a node n2 if all paths from the entry node to n2 go through n1.) 
Strict SSA form guarantees that no variable is used before being defined.



Strict SSA form

Strict Non strict

x1←1

y1←1 x2←2

x3←x1+x2

x1←1

y1←1 x2←2

x3←x1+x1



Comparing IRs



CPS/L3 vs RTL/CFG in SSA
As the correspondences in the table below illustrate, CPS/L3 is very close to 
RTL/CFG in SSA form.

RTL/CFG in SSA ≅ CPS/L3

(named) basic block ≅ continuation

ɸ-function ≅ continuation argument

jump ≅ continuation invocation

strict form ≅ scoping rules



CPS/L3 vs RTL/CFG in SSA
CPS/L3

(letc ( 
  (loop 
    (cnt (x2 y2) 
      (let* ((ct (cnt () 
                   (appf print x2))) 
             (cf (cnt () 
                   (letp ((y3 (% x2 y2))) 
                     (appc loop y2 y3))))) 
        (if (= y2 0) ct cf))))) 
  (let* ((x1 2016) (y1 714)) 
    (appc loop x1 y1)))

RTL/CFG in SSA form

x2←ɸ(x1,y2) 
y2←ɸ(y1,y3) 
y2 == 0

y3←x2%y2print x2

x1←2016 
y1←714

loop

ct cf



Summary and references

Claim: continuation-based, functional IRs like CPS/L3 are SSA done right, and 
should replace it — or, at the very least, ɸ-functions should be replaced by 
continuation arguments. 
(This is fortunately starting to happen, e.g. the Swift Intermediate Language 
has basic-blocks with arguments.) 

* * * 
CPS/L3 is heavily based on the intermediate representation presented by 
Andrew Kennedy in Compiling with Continuations, Continued, in Proceedings 
of the International Conference on Functional Programming (ICFP) 2007.


