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Functions

Functions

All languages offer functions, but with varying degrees of power, for example: 
– in C, they can be passed as arguments and returned, but not nested, 
– in functional languages, they can be nested and survive the scope that 

defined them. 
Consequences: 

– functions in C are less powerful than in functional languages (e.g. one can't 
define function composition), 

– functions in C are easier to represent, as a code pointer is enough.

Example

The following L3 example illustrates the challenges of representing functions in 
functional languages: 
(def make-adder 
  (fun (x) 
    (fun (y) (@+ x y)))) 
(def increment (make-adder 1)) 
(increment 41) ⇒ 42 
(def decrement (make-adder -1)) 
(decrement 42) ⇒ 41



Closures

Closures

A simple code pointer cannot represent the functions returned by make-
adder — at least not without run time code generation. 
That code pointer must be paired with an environment giving the values of 
the free variables, here x, in what is called a closure.

Closures
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The code of the closure must be evaluated in its environment, 
so that x is “known”.
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Introducing closures

Using closures instead of function pointers impacts: 
– function abstraction, which must build and return a closure instead of a 

simple code pointer, 
– function application, which must extract the code pointer from the closure, 

and invoke it with the environment as an additional argument.



Representing closures

Notice that: 
– since the code pointer is accessed during function application, it must be at 

a known location, 
– since the environment is only accessed by the function itself, it can be laid 

out in an arbitrary way. 
In particular, the environment can be "inlined" to obtain a flat closure.

Flat closures
In flat (or one-block) closures, the environment is “inlined” into the closure 
itself, instead of being referred from it. The closure itself plays the role of the 
environment.
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Exercise

Given the following L3 composition function: 
(def compose 
  (fun (f g) 
    (fun (x) (f (g x))))) 

draw the flat closure returned by the application 
(compose succ twice) 

assuming that succ and twice are two functions defined in an enclosing 
scope.

Compiling closures



Closure conversion

Closures are introduced by a simplification phase called closure conversion 
that: 

– takes a program in which functions can have free variables, 
– produces a program where all functions are closed. 

Source functions are represented as closures. 
Note: This is just values representation for functions!

Free variables

The free variables of a function are the variables that are used in it but 
defined in some enclosing scope. 
The make-adder example contains two functions: 
(def make-adder 
  (fun (x) 
    (fun (y) (@+ x y)))) 

The outer one has no free variable — it is closed. 
The inner one has one free variable: x.

Closing functions

Functions are closed by: 
1. adding a parameter representing the environment, and 
2. using it in the function’s body to access free variables. 

Function abstraction and application must be adapted: 
– abstraction must create and initialize the closure, 
– application must pass the environment as an additional parameter.

Closing example
Assuming the existence of abstract closure-make and closure-get 
functions, a closure conversion phase could transform the make-adder 
example as follows:

(def make-adder (fun (x) (fun (y) (@+ x y)))) 
(make-adder 1)

(def make-adder 
  (closure-make 
    (fun (env1 x) 
      (closure-make 
        (fun (env2 y) 
          (@+ (closure-get env2 1) y)) 
        x)))) 
((closure-get make-adder 0) make-adder 1)



Recursive closures

Recursive functions need access to their own closure. For example: 
(letrec ((f (fun (l) … (map f l) …)))) 
  …) 

Several techniques can be used to give a closure access to itself: 
– the closure — here f — can be treated as a free variable, and put in its own 

environment — leading to a cyclic closure, 
– the closure can be rebuilt from scratch, 
– with flat closures, the environment is the closure, and can be reused 

directly.

Mutually-recursive closures

Mutually-recursive functions all need access to the closures of all the functions 
in the definition. 
For example, in the following program, f needs access to the closure of g, and 
the other way around: 
(letrec ((f (fun (l) … (compose f g) …)) 
         (g (fun (l) … (compose g f) …))) 
  …) 

Solutions: 
– use cyclic closures, or 
– share a single closure with interior pointers — but note that the resulting 

interior pointers make the job of the garbage collector harder.

Mutually-recursive closures
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Functions in CPS/L3

In the L3 compiler, we represent L3 functions using flat closures. 
Flat closures are simply blocks tagged with a tag reserved for functions — we 
choose 202. 
The first element of the block contains the code pointer while the other 
elements — if any — contain the environment of the closure.

CPS/L3 closure conversion

In the L3 compiler, closure conversion is not a separate phase. Rather, it is the 
part of the values representation phase that takes care of representing 
function values. 
Closure conversion is therefore specified exactly like the values representation 
phase.

CPS/L3 free variables
F[(letp ((n (p v1 …))) e)] = 
  (F[e] \ { n }) ∪ F[v1] ∪ … 
F[(letc ((c1 (cnt (n1,1 …) e1)) …) e)] = 
  F[e] ∪ (F[e1] \ { n1,1, … }) ∪ … 
F[(letf ((f1 (fun (c1 n1,1 …) e1)) …) e)] = 
  (F[e] ∪ (F[e1] \ { n1,1, … }) ∪ …) \ { f1, … } 
F[(appc c v1 …)] = F[v1] ∪ … 
F[(appf v c v1 …)] = F[v] ∪ F[v1] ∪ … 
F[(if (p v1 …) ct cf)] = F[v1] ∪ … 
F[(halt v)] = F[v] 
F[n] = { n } if n is a name 
F[l] = {} if l is a literal 

Note: CPS/L3 scoping rules ensure that continuation variables are never free in 
a function, so we ignore them.

Function definition
⟦(letf ((f1 (fun (c1 n1,1 …) e1)) …) e)⟧ = 
  (letf ((w1 (fun (c1 env1 n1,1 …) 
              (let* ((v1 (block-get env1 1)) 
                     …) 
                ⟦e1⟧{f1→env1}{FV1(0)→v1}{…})) 
         …) 
    (let* ((f1 (block-alloc-202 |FV1|+1)) 
           … 
           (t1 (block-set! f1 0 w1)) 
           (t2 (block-set! f1 1 FV1(0))) 
           …) 
      ⟦e⟧) 
FVi = an (arbitrary) ordering of the set F[ei] \ { fi, ni,1, … }

closed f1
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Function application

Function application has to be transformed in order to extract the code 
pointer from the closure and pass the closure as the first argument after the 
return continuation: 
⟦(appf v nc v1 …)⟧ = 
  (letp ((f (block-get ⟦v⟧ 0))) 
    (appf f nc ⟦v⟧ ⟦v1⟧ …))

Function test

Functions being represented as tagged blocks, checking that an arbitrary 
object is a function amounts to checking that it is a tagged block and if it is, 
that its tag is 202. 
This can be done directly in L3, as a library function: 
(def function? 
  (fun (o) 
    (and (@block? o) 
         (@= 202 (@block-tag o)))))

Exercise

We have seen two techniques to represent the closures of mutually-recursive 
functions: cyclic closures and shared closures. 
Which of these two techniques does our transformation use (explain)?

Improving CPS/L3 

closure conversion



Translation inefficiencies

The translation just presented is suboptimal in two respects: 
1. it always creates closures, even for functions that are never used as values 

(i.e. only applied), 
2. it always performs calls through the closure, thereby making all calls 

indirect. 
These problems could be solved by later optimizations or by a better version 
of the translation sketched below.

Translation inefficiencies

Applied to the CPS version of the make-adder example: 
(def make-adder (fun (x) 
                  (fun (y) (@+ x y)))) 
(make-adder 1) 

the simple translation creates a closure for the outer function, which is not 
needed as it is closed and never used as a value. 
(Even if it escaped, i.e. was used as a value, the call could avoid going through 
the closure, as it is a known function here).

Improved translation

The simple translation translates a source function into one target function and 
one closure. 
The improved translation splits the target function in two: 

1. the wrapper, which extracts the free variables from the environment and 
passes them as arguments to the worker, 

2. the worker, which takes the free variables as additional arguments and 
does the real work. 

The wrapper is put in the closure. 
The worker is used directly whenever the source function is applied to 
arguments instead of being used as a value.

Improved function definition
⟦(letf ((f1 (fun (c1 n1,1 …) e1)) …) e)⟧ = 
  (letf ((w1 (fun (c1 n1,1 … u1 …) 
                ⟦e1⟧{FV1(0)→u1}{…})) 
         (s1 (fun (c1 env1 n11 …) 
                (let* ((v1 (block-get env1 1)) 
                        …) 
                  (appf w1 c1 n11 … v1 …)))) 
         …) 
    (let* ((f1 (block-alloc-202 |FV1|+1)) 
           … 
           (t1 (block-set! f1 0 s1)) 
           …) 
      ⟦e⟧)

worker

wrapper



Improved function application

When translating function application, if the function being applied is known 
(i.e. bound by an enclosing letf), its worker can be used directly: 
⟦(appf n nc v1 …)⟧ = if n is the name of a known function, with worker nw 
  (appf nw nc ⟦v1⟧ … FVn(0) …) 

otherwise, the closure has to be used, as before: 
⟦(appf v nc v1 …)⟧ = otherwise 
  (letp ((f (block-get ⟦v⟧ 0))) 
    (appf f nc ⟦v⟧ ⟦v1⟧ …))

Free variables

The improved translation makes the computation of free variables slightly 
more difficult, because: 

– if a function f calls a known function g, it has to pass it its free variables as 
arguments, 

– the free variables of g now become free variables of f, 
– they must therefore be added to f's arguments, impacting its callers — 

which could include g, 
– and so on...

Hoisting 
CPS/L3 functions

Function hoisting

After closure conversion, all functions in the program are closed, and can 
therefore be hoisted to a single outer letf. 
Afterwards, the program has the following simple form: 
(letf (all functions of the program) 
  main program code) 

where main program code does not contain any function definition (letf 
expression). 
This simplifies the shape of the program and the job of later phases.



CPS/L3 hoisting (1)

⟦(letp ((n (p n1 …))) e)⟧ = 
  (letf (fs) 
    (letp ((n (p n1 …))) e′)) 
  if ⟦e⟧ = (letf (fs) e′) 

CPS/L3 hoisting (2)
⟦(letc ((c1 (cnt (n1,1 …) e1)) …) e)⟧ = 
  (letf (fs1 … fs) 
    (letc ((c1 (cnt (n1,1 …) e1′)) …) e′)) 
  if ⟦ei⟧ = (letf (fsi) ei′) 
  and ⟦e⟧ = (letf (fs) e′) 
⟦(letf ((f1 (fun (n1,1 …) e1)) …) e)⟧ = 
  (letf ((f1 (fun (n1,1 …) e1′)) … fs1 … fs) e′) 
  if ⟦ei⟧ = (letf (fsi) ei′) 
  and ⟦e⟧ = (letf (fs) e′) 
⟦e⟧ when e is any other kind of expression = 
  (letf () e)

Closures 
and objects

Closures and objects

A closure can be seen as an object with: 
– a single method, containing the code of the closure, 
– a set of fields: the environment. 

Therefore, anonymous nested classes can be used to simulate closures! 
Problem: the syntax is too heavyweight to be used often. Java (≥ 8), Scala, etc. 
offer special syntax for anonymous functions, which are translated to nested 
classes.



Adder maker in Scala

To see how closures are handled in Scala, let's look at how the translation of 
the Scala equivalent of the make-adder function: 
def makeAdder(x: Int): Int => Int = 
  { y: Int => x+y } 
val increment = makeAdder(1) 
increment(41)

Translated adder

class Anon extends Function1[Int,Int] { 
  private val x: Int; 
  def this(x: Int) = { this.x = x } 
  def apply(y: Int): Int = this.x + y 
} 
 
def makeAdder(x: Int): Function1[Int,Int] = 
  new Anon(x) 
val increment = makeAdder(1) 
increment.apply(41)

(Hoisted) closure class: the code is in 
the apply method, the environment in 

the object itself: it's a flat closure.

closure application (the closure 
is passed implicitly as this)

closure creation

env. extraction

env. initialization


