Dataflow analysis

Advanced Compiler Construction
Michel Schinz — 2020-03-19

A first example :
available
expressions

The following C program fragment sets r to xy for y > 0. How can it be
(slightly) optimised?
int y1 = 1;
int r = x;
while (yl | = y) {
int t = yi1%x2;
if (t <= vy) {

r o= rkr;
Y1 = Yi1%2;
} else {
r= kX
yi = yitl;

¥
¥

CSE

The following C program fragment sets r to xy for y > 0. How can it be
(slightly) optimised?

1 1nt yi1 = 1;

2 ant r = x;

2 while (y1 !'=vy) {
int t = yi1x2;

Here, y1*2 can be

replaced by t

Why is the optimization valid?
Because at line 7, expression y1*2 is available :
- no matter how we reach line 7, y1*x2 will have been computed previously at
ine 4,
- that computation is still valid at line 7 (no redefinition of y; between those
two points).
We can define for every program point the set of available expressions :

the set of all non-trivial expressions whose value has already been computed
at that point.

Available expressions
Note: we
y

only consider

expressions.

while (yl = Yy)

;-»

Available expressions

Note: we Rint v — 1
only consider v
arithmetic

expressions.

while (yl = Yy)

;-»

Available expressions

Note: we {}{}
only consider m
arithmetic

i
while (y1 !=

expressions.

Available expressions

Note: we {}
only consider m
arithmetic

expressions.

Available expressions

Note: we {}
only consider m
arithmetic

expressions.

Available expressions

Note: we {}
only consider m
arithmetic

expressions.

Available expressions

Note: we {}
only consider m
arithmetic

expressions.

- TN
5

Available expressions

Note: we {}
only consider m
arithmetic

expressions.

{}{}
N
flint € - yi2
¢

Available expressions

Note: we {}
only consider m
arithmetic

expressions.

- TRy
| NN
o T -+
v

Available expressions

Note: we {}
only consider m
arithmetic

expressions.

{}{}
N
() AR (v1+2]
¢
SRR i f (£ <= y)
' N

Available expressions

Note: we {}
only consider m
arithmetic |

expressions.

{}{}
V—
() AR (v1+2]
v
SRR () WA
v/ \

Available expressions

Note: we {}
only consider m
arithmetic |

expressions.

- TR
| NN
ine - oo O
v
T) e
4 N\
x2S
y

Available expressions

Note: we {}
only consider m
arithmetic |

expressions.

{}{}
v—
gint € = v g
v
(-2} BN ya+2)
¥ N
{y1*2}{y1*2}
!

Available expressions

Note: we {}
only consider m
arithmetic |

expressions.

{}{}
I
0 TR 2
!
(y 12} EERNEEEENN (v +2]
v \
(yi*2} [2] {yax2)
!
Ly 2} DR

Available expressions

Note: we {}
only consider m
arithmetic |

expressions.

{}{}
v—
gint € = v g
v
(-2} BN ya+2)
¥ N
{y1*2}{y1*2}
!
(a2} PR

Available expressions

Note: we {}
only consider m
arithmetic '

expressions.

{}{}
[N

Hint t = y.2 (\PRE)

!

(ya*2) EENEIEENN {v1+2)
/ N

o2l IR vax2h byax2)
' |

(yr+2} IR

Available expressions

Note: we {}
only consider m
arithmetic

expressions.

{}{}

| NN
fint € = yix2 [\PEFS
v
(ya 2} FREEEE A {y1%2]
"4 \

{y1*2} ly1x2] y1*2} {y1*2}
' |

(y+ 2} A ()

Available expressicns

Note: we {}
only consider m
arithmetic

expressions.

{}{}
(.
fint € = yi2 (IZEr)
}
(y22} (RN (y1%2]
/ \
{yl*z} ly1x2] y1*2} {y1*2}
')
(yr+2} IR y:2) [T

Available expressicns

Note: we {}
only consider m
arithmetic

expressions.

{}{}

v
o I -+
v
(yax 2} [EEEE A (y1x2)
P4 Ny

{y1*2} {y1%2]} {y1%2]} {y1*2}
V V

(yox2} IS0 (yox2} [

How can these ideas be formalized?
1. introduce a variable i, for the set of expressions available before node n,

2. introduce a variable o, for the set of expressions available after node n,
3. define equations between those variables,
4. solve those equations.

Equations

11={}

i2=01
i3=02007001o
i4=O3

i5=O4

i5=05

i7=06

i9=O5

110=09

Notation:
Slx =

01=I1

02=i2

03=i3
04={Yy1*2}Ui4
05=i5
Oé=i5lr
07=I71y1
09=i91r
O1o=i1oly1

S\{all expressions using x}

The equations can be solved by iteration:
- initialize all sets iy, ..., i109, 01, ..., 010 to the set of all non-trivial expressions in
the program, here {y1*2, yi+1, rxr, rxx},
- viewing the equations as assignments, compute the "new” value of those
sets,
- iterate until fixed point is reached.
Initialization is done that way because we are interested in finding the largest

sets satistying the equations: the larger a set is, the more information it
conveys (for this analysis).

Solving equations

Simplity by replacing all iy variables by their value:

01 =1{}

O2 = 0O1

O3 = 02N 07N O10
04 = 03 U {y1*2]}
O5 = Oy

Og = o5lr
O7 = OélYl
Og = o5lr

O10 = O9ly1

Solving equations

The simplitied system is solved after 7 iterations:

0 YR U U U U U
o YR OYR O {} { { { {
| YR YR R {} {} {} U
1 YR YR YR {yi*2,r*r, rxx;} {y1*2} {yix2} {y1*2}
<o YR YR YR YR {y1*2,r*r, rxx} {yi1*2} {yix2}
5l YR Y Y Y Y {y1*2} {yi1*x2}
| YR R {} {) {} {} {}
0l YR Y Y Y Y {yi*2} {yix2}
Sl YRR {D {J { { U

Notation: Y={yi1*2, y1+1}, R={r*r, rxx}, YR=YUR

The equations for a node n have the following form:
In = Op1 N Op2 N ... N Opk
where p1 ... pk are the predecessors of n.
on = genag(n) u (in \ killag(n))
where genag(n) are the non-trivial expressions computed by n, and killag(n) is
the set of all non-trivial expressions that use a variable modified by n.

Substituting i, in 0, we get:

on = genage(n) u [(0p1 N 0p2 N ... nopk) \ killag(n)]
These are the dataflow equations for the available expressions datatlow
analysis.

The equation giving the expressions available at the exit of node n is:

on = genag(n) u (in \ killag(n))
where genag(n) are the non-trivial expressions computed by n, and killag(n) is
the set of all non-trivial expressions that use a variable modified by n.

For this to be correct, expressions that are computed by n but that use a
variable modified by n must not be part of genag(n). For example

genae(X=y*xy) ={y*y} but genae(y=y*y) = {}

Available expressions is one example of a dataflow analysis.

Dataflow analysis is an analysis framework that can approximate various
poroperties of programs, which can then be used to do:

- common sub-expression elimination,
- dead code elimination,

- constant propagation,

- reqister allocation,

- elc.

We only consider intra-procedural dataflow analyses (i.e. restricted to a
single function) working on the control-flow graph of the function.

Reminder:
- CFG nodes are the statements of the function,

- CFG edges represent the flow of control: an edge from n; to n, means that
control can flow immediately from n7 to no.

Analysis #2:
live variables

A variable is said to be live at a given point if its value will be read later:
- clearly undecidable, but
- dataflow analysis can compute an approximation.

Liveness can be used to allocate registers, for example: a set of variables that
are never live at the same time can share a single reqgister.

Intuitively:
- a variable is live after a node if it is live before any of its successors,

- a variable is live before node n it it is either read by n, or live after n and not
written by n,

- no variable is live after an exit node.

We associate to every node n a pair of variables (i,,0,) that give the set of
variables that are live when the node is entered or exited, respectively, defined

as follows:
in = genpy(n) U (on \ killpy(n))
where genpy(n) is the set of variables read by n, and killy(n) is the set of
variables written by n.
On =151 Ul U ... U lek
where s ... sy are the successors of n.
Substituting o, in i, we get:
in=genp(n) U [(is1 Uisz U ... Uisk) \ killpy(n)]

Equation solving

We want the sets of live variables to be as small as possible.
Therefore we initialize all sets to the empty set.

Example

X=read-1nt

y=read-int

1T x<y

Z=X Z=y

CFG
|
¥

Y- read-int

v

15t xcy

'4

Example

equations

i1 = iz\{X}

solution

CFG
|
¥

Y- read-int

v

15t xcy

'4

Example

equations

i1 = iz\{X}
i =13 \{y]}

solution

Example

- cao- e QUENANS

v . i =13 \1{y]}

CFG equations solution

Y- rcac-int RSO

v

N

N -
"4
28 Z=X

zy

v
NOAN

Aprint

Example

CFG equations solution
I - cad-in< JUEREAVS
v i =13 \{y}
PRERIE s={xy}uliauis)
v ia ={x}u(ig \{Z})
]
"4 N
2 Z=X N Z =Y
N "4
Aprint z

Example

- cao- e QUENANS

. i2 =13 \{y]

¥
dy=read=int BT ORIV
\ i ={x}u(ig\{z})

s = {y} u (i \ {2}
4 \y

3
2 Z=X N Z =Y

CFG equations solution

'4
AN N

Aprint

Example

CFG equations solution
-+ cao-inc QUEENEAVS
v i2 =13 \{y}
Y. -rcad-in: JRNEANHTARE
v ia = {x}U (i \ {Z})

3 5 = {y}u (i \ {2}
4 N 6 =1z}
2 Z=X N Z =Y

v
NOAN

Aprint

Example

CFG equations solution
)l x=read-int IENETERANGS =)
\ > =13 \ {y} o ={X}
2 3= {x, y} U (ia U is) 3={x,y}
v g ={x} U (i \ {Z}) 4 = {X]
3 s =y} u (is \ {2) s = 1)
¥ N i, = {z) 6 =1{z}
ol Z=X BN Z =Y/

'4
N

Aprint

Using live variables

Neither x nor y is live at the same time as z.
Therefore, z can be replaced by x or .

original CFG analysis result optimized CFG
8 x=read-1nt =17
i2=1{X} {
Ay=read-int i3={X, Yy}
s =1{X]} ¥
s ={y)

6 =12} ¥

Analysis #3:
reaching definitions

The reaching definitions for a program point are the assignments that may
have defined the values of variables at that point.

Can be approximated using dataflow analysis, and the result used to perform

constant propagation, for example.

Intuitively:
- a definition reaches the beginning of a node if it reaches the exit of any of
its predecessors,
- a definition contained in a node n always reaches the end of n itself,

- a definition reaches the end of a node n if it reaches the beginning of n and

is not killed by n itself.

(A node n kills a definition d it and only if n is a definition and defines the same
variable as d.)

For now, we assume no definition reaches the beginning of the entry node.

We associate to every node n a pair of variables (i,,0,) that give the set of
definitions reaching the entry and exit of n, respectively, defined as follows:

In = 0p1 U Op2 U ... U Opk
where p1 ... px are the predecessors of n.

on = gengrp(n) u (in \ killrp(n))
where gengrp(n) is {(x,n)} if n is a definition of variable x, {} otherwise, and
killrp(n) is the set of definitions defining the same variable as n itself.

Substituting i, in o, we get:
On = genrp(n) U [(0p1 U 0p2 U ... U Opk) \ killrp(n)]

Equation solving

We want the sets of reaching definitions to be as small as possible.
Therefore we initialize all sets to the empty set.

Example

equations solution
\
Vo1
\
ey
\ Notation:
6 Six =S\ {all definitions of x}

v

Lorint -

Example

equations solution
o1={(x,1)]

Notation:

6 Six =S\ {all definitions of x}

Example

equations solution

o1={(x,1)}
o2={(y,2)}u o1ly

Notation:

6 Six =S\ {all definitions of x}

Example

equations solution

o1={(x,1)}
o2={(y,2)}u o1ly
03={(z,3)} v 02!z

Notation:
Six =S \{all definitions of x}

Example

equations solution

Notation:
Six =S \{all definitions of x}

Example

equations solution

Notation:
Six =S \{all definitions of x}

Example

equations solution
o1={(x,1)}
o2={(y,2)}u o1ly
03={(z,3)} v 021z
04={(X,4)} U (03 U 0g)1 X
os5={(z,5)}u 04!z
O4=05
Notation:

Six =S \{all definitions of x}

Example

equations solution

Notation:
Six =S \{all definitions of x}

Lorint -

Example

equations

Notation:

solution

Six =S \{all definitions of x}

Using reaching definitions
A single constant definition of y reaches node 5.

Therefore, y can be replaced by 3 in it.

original CFG analysis result optimized

T -100 R

Using reaching definitions

A single constant definition of y reaches node 5.
Therefore, y can be replaced by 3 in it.

original CFG analysis result optimized
| or={(x,1)

02={(x,1), (y,2)}

o3=i(x,1),(y.2),(z,3)}
0a={(x,4)((y.2)(2.3), (z,5)
os=1(x,4),(y,2),(z,9)}

06=1(x,4), (y,2),(z,5)}
o7=1(x,4),(y,2),(z,5)]

Note: if uniniti

INncorrect resu

CFG

alized variables are allowed, the above analysis can produce
ts.

equations solution
o1={(x,1)} o1={(x,1)}
02={(z,2)}vu 01!z 02={(x,1), (z,2)}
03={(x,3)} u (02 U 0g) X o3={(x,3), (y,5),(z,2),(z,4)}
04={(z,4)} v 03!z 04={(x,3), (y,3), (z,4)}
os={(y,5)} u oaly os={(x,3), (y,d), (z,4)}
04=0s 06={(x,3), (y,9), (z,4)}

We might think that y can be replaced by the value
3 in node 4, as before, but it's wrong!

Uninitialized variables

Solution: record all variables as “initialized in some unknown location” at the
entry of the first node!

CFG equations solution
| o1={(x,1),(y,7), (z,7)} o1={(x,1), (v,?), (z,7)}
02={(z,2)} v 01!z 02={(x,1), (z,2)}
03={(x,3)} U (02 U 06)1 X 03={(x,3), (v,7), (y,2), ...}
04={(z,4)}v 03lz 04=1(x,3), (v,7), (y,9), (z,4);
os={(y,5)}u osly 05={(x,3), (y,2), (z,4)]
04=05 06=1(X,3), (y,2), (z,4)}

Analysis #4:
very busy
expressions

An expression is very busy at some program point if it will definitely be
evaluated before its value changes.
Can be approximated by dataflow analysis, and the result used to perform

code hoisting: the computation of a very busy expression can be performed at
the earliest point where it is busy.

Intuitively:
- an expression is very busy after a node it it is very busy in all of its
SUCCESSOTS,

- an expression is very busy before node n it it is either evaluated by n itself,
or very busy after n and not killed by n,

- No expression is very busy after an exit node.
(A node kills an expression e iff it redefines a variable appearing in e.)

We associate to every node n a pair of variables (i,,0,) that give the set of

expressions that are very busy when the node is entered or exited,
respectively, defined as follows:

in = genya(n) U (on \ killyg(n))

where genyg(n) is the set of expressions evaluated by n, and killyg(n) is the
set of expressions killed by n,

On=1s1Nls2 N ... N lsk

where sq ... s, are the successors of n.
Substituting o, in i, we get:

I, = genVB(n) U [(i51 Nlso N ... N isk) \ |<|HVB(n)]

We want the sets of very busy expressions to be as large as possible.

Therefore we initialize all sets to the set of all non-trivial expressions of the
function.

Example

equations solution

Notation:
SIx =S5\{all expressions using x}

Example

equations solution

i1={a+b} Uird T

Notation:
SIx =S5\{all expressions using x}

Example

CFG equations solution

i1={a+b} Uird T
>={a*xb}uislu

-«

S

Notation:
SIx =S5\{all expressions using x}

Example

CFG equations solution

i1={a+b} Uird T

3 i2={a*b} Uiszdu
i3=i4 N i5
5
Notation:

SIx =S5\{all expressions using x}

Example

equations solution

I1={atb}luirxlt
i2={a*b} Uiz u
13=14 N I5

i4={a—b} U iélt

Notation:
SIx =S5\{all expressions using x}

Example

equations solution

I1={atb}luirxlt
i2={a*b} Uiz u
13=14 N Is

i4={a—b} U iélt
i5={a—b} U iélu

Notation:
SIx =S5\{all expressions using x}

Example

equations solution

I1={atb}luirxlt
>={a*xb}uislu
13=14 N Is5
s={a-b}luiglt
i5={a—b} U iélu
le={t*u}

Notation:
SIx =S5\{all expressions using x}

Example

equations solution
1={a+b}luirlt i1={a+b, a—-b, axb}
i»={axb}uisiu i,={a—-b, axb}
i3=ia N is is={a-b}
u={a-bluiglt i4={a—bj}
is={a-b} U iU is=ta-b}
is={t*u) le={t*xu]}

Notation:

SIx =S5\{all expressions using x}

Using very busy expressions

Expression a-b is very busy before the conditional.
Therefore, it can be evaluated earlier.

original CFG analysis result optimized CFG
, 1={a—b, axb, a+b}
| »={a—b, a*xb} v
I3={a—b} u=a*b
i4={a—b} /
3 is={a—Db]}
le={t*xu]}

"4 N\
-0 -0
Ny "4

M T=1T*U

Classification of
dataflow analyses

Equations summary

Analysis Input equation Output equation

available . . .
, in = Op1 N Op2 N ... N Opk on = genag(n) u (in \ killag(n))
expressions

NEEEsles iy = genpy(n) U (on \ killpy(n)) On =151 Ulisr U ... U lisk

¥
dree;r(m:itilggs In = Op1 U Op2 U ... U Opk on = genrp(n) U (in \ killrp(n))

CREEE onve(n) U (0 \Kilba(n) On = iut iz 1 oo ik

expressions

Forward vs backward:
- Forward analyses: the property of a node depends on those of its
predecessors.
- Backward analyses: the property of a node depends on those if its
SUCCESSOTS.
May vs must:
- Must analyses: a property must be true in all neighbors to be true in a
node.

- May analyses: a property must be true in at least one neighbor to be true
in a node.

Taxonomy

Forward Backward

available expressions very busy expressions

reaching definitions ive variables

Speeding-up
dataflow analyses

Dataflow analyses can be sped up by:
- a work-list algorithm, avoiding useless computations,
- equations ordering, speeding-up propagation,
- smaller CFGs using basic blocks,
- bit-vectors to represent sets.

Running example

To illustrate speed-up techniques, we reuse the live variables example:

CFG equations solution
I - coo-inc JREERIAYY =0
{ i =13 \{y] i = {x}
; s= Y Ulauis) i={x,y]
¥ ia ={x}u(is \{Z}) 4 = {X}
i f x<y is = {y}u (is \ {z}) is ={y}

lg = {Z} 6 = {Z}

Computation by iteration: 3 iterations with 6 computations each, for a total of
18 computations.

11 = 12\MX}, i2 = 13\Y}, 13 ={X,y} U (ig U is),
ia ={x}u(isMz}), 15 =1y} U (isMZ}), 16 =12}

Base case: iteration

Computation by iteration: 3 iterations with 6 computations each, for a total of
18 computations.

Iteration

i1 = 12\{x}, i2 = 13y}, i3 ={x,y}u (i U is5),
i =1{X} U (ie\MZ}), iIs ={y} U (ie\MZ}), i6 = {2}

Base case: iteration

Computation by iteration: 3 iterations with 6 computations each, for a total of
18 computations.

Iteration

0) L) U L) U)

i1 = 12\{x}, i2 = 13y}, i3 ={x,y}u (i U is5),
i =1{X} U (ie\MZ}), iIs ={y} U (ie\MZ}), i6 = {2}

Base case: iteration

Computation by iteration: 3 iterations with 6 computations each, for a total of
18 computations.

Iteration

0
L

{] {] {] {] {] {]
{] iy ixy}r {x} {y} {z}

i1 = 12\{x}, i2 = 13y}, i3 ={x,y}u (i U is5),
i =1{X} U (ie\MZ}), iIs ={y} U (ie\MZ}), i6 = {2}

Base case: iteration

Computation by iteration: 3 iterations with 6 computations each, for a total of
18 computations.

Iteration

{] {] {] {] {] {]
{] iy ixy}r {x} {y} {z}
i} ix)t {xy} {x} {y}r {z}

i1 = 12\{x}, i2 = 13y}, i3 ={x,y}u (i U is5),
i =1{X} U (ie\MZ}), iIs ={y} U (ie\MZ}), i6 = {2}

Base case: iteration

Computation by iteration: 3 iterations with 6 computations each, for a total of
18 computations.

Iteration
0

{} {} {} {} {}
{} {} {xy} {x} {y} {z}
{} {x} {xy} {x} Ay} {z]}
{} {x} {xy} {x} {y} {z]}

L
2
3

i1 = 12\{x}, i2 = 13y}, i3 ={x,y}u (i U is5),
i =1{X} U (ie\MZ}), iIs ={y} U (ie\MZ}), i6 = {2}

Work-list algorithm:
- remember, for every variable v, the set dep(v) of the variables whose value
depends on,
- whenever some variable v changes, only re-compute the variables that
belong to dep(v).

def solve[T](eqgqs: Seq[(Int => T) => T],
dep: Int => List[Int],
init: T): (Int => T) = {
def loop(qg: List[Int], sol: Map[Int,T]): (Int => T) = g match {
case 1 :: 1s =>
val y eqs (1) (sol)
1f (y == sol(1))
loop(is, sol)

else
loop(is ::: (dep(1) diff g), sol + 1->y)
case N1l =>
sol

¥
loop(List.range(0, eqgs.length), Map.empty withDefaultValue init)

}

Work-list

i1 =12\{x}, i2 =13y}, i3 ={X,y}u (ia u is),
ia =1x}U (16 Z}), 15 ={y} u (is\MZ}), is =12}

i1 =12\{x}, 2 =13\{y}, 13 ={X,y}u (is u is),
i =1{x}U (1M Z}), 15 ={y} u (is\MZ}), is =12}

0 [i4,12,13,14,15,16] U U U U U U

i1 =12\{x}, 2 =13\{y}, 13 ={X,y}u (is u is),
i =1{x}U (1M Z}), 15 ={y} u (is\MZ}), is =12}

i1 =12\{x}, 2 =13\{y}, 13 ={X,y}u (is u is),
i =1{x}U (1M Z}), 15 ={y} u (is\MZ}), is =12}

Work-list

0 [i4,12,13,14,15,16] U U U U U U
I [li2,i3,14,15, 1] U U U U U U
"+ [l3,14,i5,16] U U U U U U

i1 =12\{x}, 2 =13\{y}, 13 ={X,y}u (is u is),
i =1{x}U (1M Z}), 15 ={y} u (is\MZ}), is =12}

Work-list

0 [li,i2,13,14,15,16] U U U U U U
I [li2,i3,14,15, 1] U U U U U U
"+ [l3,i4,i5,16. U U U U U U
<0 [1a,i5,6,12. U U XY} U U U

i1 =12\{x}, i2 =13y}, i3 ={X,y}u (ia u is),
i =1{x}U (1M Z}), 15 ={y} u (is\MZ}), is =12}

Work-list

0 [li,i2,13,14,15,16] U U U U U U
I [li2,i3,14,15, 1] U U U U U U
"+ [l3,i4,i5,16. U U U U U U
<0 [1a,i5,6,12. U U XY} U U U
20 [1s,16,i2,13] U U XY} (X} U U

i1 =12\{x}, i2 =13y}, i3 ={X,y}u (ia u is),
i =1{x}U (1M Z}), 15 ={y} u (is\MZ}), is =12}

Work-list

0 [i4,12,13,14,15,16] U U U U U U
I [li2,i3,14,15, 1] U U U U U U
"+ [l3,i4,i5,16. U U U U U U
<0 [1a,i5,6,12. U U XY} U U U
20 [1s,16,i2,13] U U XY} (X} U U
-1 [l i2,13] U U XY} 1X] % U

i1 =12\{x}, i2 =13y}, i3 ={X,y}u (ia u is),
i =1{x}U (1M Z}), 15 ={y} u (is\MZ}), is =12}

Work-list

0 [i4,12,13,14,15,16] U U U U U U
I [li2,i3,14,15, 1] U U U U U U
"+ [l3,i4,i5,16. U U U U U U
<0 [1a,i5,6,12. U U XY} U U U
20 [1s,16,i2,13] U U XY} (X} U U
-1 [l i2,13] U U XY} 1X] % U
- [i2,13i4,15] U U XY} 1X] % 1Z}

i1 =12\{x}, i2 =13y}, i3 ={X,y}u (ia u is),
i =1{x}U (1M Z}), 15 ={y} u (is\MZ}), is =12}

Work-list

V1 [iq,i2,13,14,15,i6] {} {} {} {} {} {}
(| [i2,13,14,15,i¢] {} {} {} {} {} {}
7+ [i3,1a,i5,16] {} {} {} {} {} {}
<1 [ig,is,ig,i2. {} {} {x,y} {} {} {}
2 is,igiz,13] {} {} {x,y} {x} {} {}
<1 i i2,i3] {J {J {x,y} {x} {y} {}
<3 [i2,i3i4,15. {J {J {x,y} {x} {y} {z}
7| [iz)ig,is,11. {J {x} {x,y} {x} iy} {z]

i1 =12\{x}, i2 =13y}, i3 ={X,y}u (ia u is),
i =1{x}U (1M Z}), 15 ={y} u (is\MZ}), is =12}

Work-list

3

V1 [iq,i2,13,14,15,i6] {} {} {} {} {} {}
(| [i2,13,14,15,i¢] {} {} {} {} {} {}
7+ [i3,1a,i5,16] {} {} {} {} {} {}
<1 [ig,is,ig,i2. {} {} {x,y} {} {} {}
2 is,igiz,13] {} {} {x,y} {x} {} {}
<1 i i2,i3] {J {J {x,y} {x} {y} {}
<3 [i2,i3i4,15. {J {J {x,y} {x} {y} {z}
7| [iz)ig,is,11. {J {x} {x,y} {x} iy} {z]
23| [ig,is,iq] {J {x} {x,y} {x} iy} {z]

i1 =12\{x}, i2 =13y}, i3 ={X,y}u (ia u is),
i =1{x}U (1M Z}), 15 ={y} u (is\MZ}), is =12}

Work-list

- 3
V1 [iq,i2,13,14,15,i6] {} {} {} {} {} {}
(| [i2,13,14,15,i¢] {} {} {} {} {} {}
7+ [i3,1a,i5,16] {} {} {} {} {} {}
<1 [ig,is,ig,i2. {} {} {x,y} {} {} {}
2 is,igiz,13] {} {} {x,y} {x} {} {}
<1 i i2,i3] {J {J {x,y} {x} {y} {}
<3 [i2,i3i4,15. {J {J {x,y} {x} {y} {z]
7| [iz)ig,is,11. {J {x} {x,y} {x} iy} {z]
23| [ig,is,iq] {J {x} {x,y} {x} iy} {z]
oA [is, i] {} {x} {x,y} {x} {y] {z}

i1 =12\{x}, i2 =13y}, i3 ={X,y}u (ia u is),
i =1{x}U (1M Z}), 15 ={y} u (is\MZ}), is =12}

Work-list

. 3 ia
V1 [iq,i2,13,14,15,i6] {} {} {} {} {} {}
(| [i2,13,14,15,i¢] {} {} {} {} {} {}
7+ [i3,1a,i5,16] {} {} {} {} {} {}
<1 [ig,is,ig,i2. {} {} {x,y} {} {} {}
2 is,igiz,13] {} {} {x,y} {x} {} {}
<1 i i2,i3] {J {J {x,y} {x} {y} {}
<3 [i2,i3i4,15. {J {J {x,y} {x} {y} {z]
7| [iz)ig,is,11. {J {x} {x,y} {x} iy} {z]
23| [ig,is,iq] {J {x} {x,y} {x} iy} {z]
oA [is, i] {} {x} {x,y} {x} {y] {z}
101ty {} {x} {x,y} {x} {y] {z}

i1 =12\{x}, i2 =13y}, i3 ={X,y}u (ia u is),
i =1{x}U (1M Z}), 15 ={y} u (is\MZ}), is =12}

Work-list

- i1 3 ia
V1 [iq,i2,13,14,15,i6] {} {} {} {} {} {}
(| [i2,13,14,15,i¢] {} {} {} {} {} {}
7+ [i3,1a,i5,16] {} {} {} {} {} {}
<1 [ig,is,ig,i2. {} {} {x,y} {} {} {}
2 is,igiz,13] {} {} {x,y} {x} {} {}
<1 i i2,i3] {J {J {x,y} {x} {y} {}
<3 [i2,i3i4,15. {J {J {x,y} {x} {y} {z]
7| [iz)ig,is,11. {J {x} {x,y} {x} iy} {z]
23| [ig,is,iq] {J {x} {x,y} {x} iy} {z]
oA [is, i] {} {x} {x,y} {x} {y] {z}
101ty {} {x} {x,y} {x} {y] {z}
] {} {x} {x,y} {x} {y] {z}

i1 =12\{x}, i2 =13y}, i3 ={X,y}u (ia u is),
i =1{x}U (1M Z}), 15 ={y} u (is\MZ}), is =12}

The work-list algorithm needs "only" 11 computations, but:
- would be faster with work-list reversed,
- that's because live variables is a backward analysis.

Node ordering orders the elements of the work-list so that the solution is
computed as fast as possible.

(Reverse) post-order

Backward analyses: use post-order traversal of CFG.

Forward analyses: use reverse post-order traversal of CFG.

CFG Post-order:
654321 or 645321
Reverse post-order:

123456 or 123546

Note: reverse post-order is not the same as pre-order!

Pre-order:
123465 or 123564

Post-order work-list

Post-order work-list: only 6 computations required.

i1 =1o\{x}, 12 =13y}, i3 ={x,y} u (iz U is),
ia =1{x}U (1 z}), 15 ={y} u (is\Mz}), is =12}

Post-order work-list

Post-order work-list: only 6 computations required.

i1 =1o\{x}, 12 =13y}, i3 ={x,y} u (iz U is),
ia =1{x}U (1 z}), 15 ={y} u (is\Mz}), is =12}

Post-order work-list

Post-order work-list: only 6 computations required.

i1 =1o\{x}, 12 =13y}, i3 ={x,y} u (iz U is),
ia =1{x}U (1 z}), 15 ={y} u (is\Mz}), is =12}

Post-order work-list

Post-order work-list: only 6 computations required.

i1 =1o\{x}, 12 =13y}, i3 ={x,y} u (iz U is),
ia =1{x}U (1 z}), 15 ={y} u (is\Mz}), is =12}

Post-order work-list

Post-order work-list: only 6 computations required.

"4 [la,i3,i211] U U U U % 1Z}

i1 =1o\{x}, 12 =13y}, i3 ={x,y} u (iz U is),
ia =1{x}U (1 z}), 15 ={y} u (is\Mz}), is =12}

Post-order work-list

Post-order work-list: only 6 computations required.

"4 [la,i3,i211] i U U U % 1Z}
SIERPATY U U U (X} % 1Z}

i1 =1o\{x}, 12 =13y}, i3 ={x,y} u (iz U is),
ia =1{x}U (1 z}), 15 ={y} u (is\Mz}), is =12}

Post-order work-list

Post-order work-list: only 6 computations required.

"4 [la,i3,i211] U U U U % 1Z}

SIERPATY i U U (X} % 1Z}
2 [li2,iq] U U XY (X} % \Z}

i1 =1o\{x}, 12 =13y}, i3 ={x,y} u (iz U is),
ia =1{x}U (1 z}), 15 ={y} u (is\Mz}), is =12}

Post-order work-list

Post-order work-list: only 6 computations required.

1a,i3,i2,11] i U U U % 1Z}
13,i2,11] U U U (X} % 1Z}
12,i1] U U XY (X} % \Z}
1] U (X} XY} 1X] % 1Z}

i1 =1o\{x}, 12 =13y}, i3 ={x,y} u (iz U is),
ia =1{x}U (1 z}), 15 ={y} u (is\Mz}), is =12}

Post-order work-list

Post-order work-list: only 6 computations required.

i1 =1o\{x}, 12 =13y}, i3 ={x,y} u (iz U is),
ia =1{x}U (1 z}), 15 ={y} u (is\Mz}), is =12}

4,13,i2,11] i U U U % 1Z}
13,i2,11] i U U (X} % 1Z}
12,i1] U U XY (X} % \Z}
1] U (X} XY} 1X] % 1z}
| U (X} XY} (X} % \Z}

CFG nodes can be basic blocks instead of instructions:
- reduces the size of the CFG,
- variables are attached to basic blocks, not instructions,
- computing the solution for instructions is easy given that for basic blocks.

CFG with basic blocks

CFG equations solution
x=read-int fE = (i2013)\ X,] =1

N y=read-int il i2 ={x}u(ig \{Z}) > = {x}

if x<y B i3 ={y}u(iz\{z}) 13 ={y]

4 =12} 4 =1z}

The solution for individual
instructions is computed from the
basic-block solution, in a single
pass — here backwards:

e =1{x, y}u(i2ui3) ={x, y}
|1b = i1c \1y} = {x}
= I1p \{X} =1{}

All datatlow analyses we have seen work on sets of values. If they are dense,
represent them as bit vectors:

- uses only one bit per element,

- union is "bitwise or",

- intersection is "bitwise and",

- complement is "bitwise inversion”,
- elc.

original equations
i1 = iz \ {X}

i2 = i3 \ {y}

i3 =1{X, y}u(iguis)
g ={x}u (i \ {Z})

is ={y}u (i \{z})

6 =12}

original solution
i1 =1}
o ={x}
I3 =1{X, Y}
4 ={X}
is =1{y]}
6 =1z}

bit vector equations

i1 =i & ~100
> =13 & ~010
i5=110] (is | i)

4 =100 (ig & ~001)
i5 =010 [(isc & ~001)
e =001

bit vector solution

i1 =000
o =100
i3=110
i, =100
i5 =010

e =001

Dataflow analysis is a framework that can be used to approximate various
programs properties, e.q.:

- liveness,

- available expressions,

- very busy expressions,

- reaching definitions.
These approximations can be used for optimizations like:

- reqister allocation,

- constant propagation,

- elc.

