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A first example : 
available 

expressions

CSE
The following C program fragment sets r to xy for y > 0. How can it be 
(slightly) optimised? 
 1 int y1 = 1; 
 2 int r = x; 
 3 while (y1 != y) { 
 4   int t = y1*2; 
 5   if (t <= y) { 
 6     r = r*r; 
 7     y1 = y1*2; 
 8   } else { 
 9     r = r*x; 
10     y1 = y1+1; 
11   } 
12 }

Here, y1*2 can be 
replaced by t

Available expressions

Why is the optimization valid? 
Because at line 7, expression y1*2 is available : 

– no matter how we reach line 7, y1*2 will have been computed previously at 
line 4, 

– that computation is still valid at line 7 (no redefinition of y1 between those 
two points). 

We can define for every program point the set of available expressions : 
the set of all non-trivial expressions whose value has already been computed 
at that point.



Available expressions
int y1 = 1

int r = x

while (y1 != y)

int t = y1*2

if (t <= y)

r = r*r

y1 = y1*2

r = r*x

y1 = y1+1

{} {}

{} {}

{} {}

{} {y1*2}

{y1*2} {y1*2}

{y1*2} {y1*2}

{y1*2} {} {y1*2} {}

{y1*2} {y1*2}

before after
Note: we 
only consider 
arithmetic 
expressions.

Formalizing the analysis

How can these ideas be formalized? 
1. introduce a variable in for the set of expressions available before node n,  
2. introduce a variable on for the set of expressions available after node n, 
3. define equations between those variables, 
4. solve those equations.

Equations
i1={} 
i2=o1 
i3=o2∩o7∩o10 
i4=o3 
i5=o4 
i6=o5 
i7=o6 
i9=o5 
i10=o9 

o1=i1 
o2=i2 
o3=i3 
o4= {y1*2}∪i4 
o5=i5 
o6=i6↓r 
o7=i7↓y1 
o9=i9↓r 
o10=i10↓y1

int y1 = 1

int r = x

while (y1 != y)

int t = y1 * 2

if (t <= y)

r = r * r

y1 = y1 * 2

r = r * x

y1 = y1 + 1

1

2

3

4

5

6

7

9

10

Notation: 
S↓x = 
  S\{all expressions using x}

Solving equations

The equations can be solved by iteration: 
– initialize all sets i1, …, i10, o1, …, o10 to the set of all non-trivial expressions in 

the program, here {y1*2, y1+1, r*r, r*x}, 
– viewing the equations as assignments, compute the “new” value of those 

sets, 
– iterate until fixed point is reached. 

Initialization is done that way because we are interested in finding the largest 
sets satisfying the equations: the larger a set is, the more information it 
conveys (for this analysis).



Solving equations

Simplify by replacing all ik variables by their value:

o1 = {} 
o2 = o1 
o3 = o2 ∩ o7 ∩ o10 
o4 = o3 ∪ {y1*2} 
o5 = o4 

o6 = o5↓r 
o7 = o6↓y1 
o9 = o5↓r 
o10 = o9↓y1 

Solving equations
The simplified system is solved after 7 iterations:

It. 1 2 3 4 5 6 7
o1 YR {} {} {} {} {} {}
o2 YR YR {} {} {} {} {}

o3 YR YR R {} {} {} {}
o4 YR YR YR {y1*2, r*r, r*x} {y1*2} {y1*2} {y1*2}
o5 YR YR YR YR {y1*2, r*r, r*x} {y1*2} {y1*2}
o6 YR Y Y Y Y {y1*2} {y1*2}
o7 YR R {} {} {} {} {}
o9 YR Y Y Y Y {y1*2} {y1*2}
o10 YR R {} {} {} {} {}

Notation: Y = {y1*2, y1+1}, R = {r*r, r*x}, YR = Y ∪ R

Generalization

The equations for a node n have the following form: 
in = op1 ∩ op2 ∩ … ∩ opk 
where p1 … pk are the predecessors of n. 

on = genAE(n) ∪ (in \ killAE(n)) 
where genAE(n) are the non-trivial expressions computed by n, and killAE(n) is 
the set of all non-trivial expressions that use a variable modified by n. 

Substituting in in on, we get: 
on = genAE(n) ∪ [(op1 ∩ op2 ∩ … ∩ opk) \ killAE(n)] 

These are the dataflow equations for the available expressions dataflow 
analysis.

Generated expressions

The equation giving the expressions available at the exit of node n is:  
on = genAE(n) ∪ (in \ killAE(n)) 

where genAE(n) are the non-trivial expressions computed by n, and killAE(n) is 
the set of all non-trivial expressions that use a variable modified by n. 
For this to be correct, expressions that are computed by n but that use a 
variable modified by n must not be part of genAE(n). For example 
genAE(x=y*y) = {y*y}  but  genAE(y=y*y) = {}



Dataflow analysis

Available expressions is one example of a dataflow analysis. 
Dataflow analysis is an analysis framework that can approximate various 
properties of programs, which can then be used to do: 

– common sub-expression elimination, 
– dead code elimination, 
– constant propagation, 
– register allocation, 
– etc.

Analysis scope

We only consider intra-procedural dataflow analyses (i.e. restricted to a 
single function) working on the control-flow graph of the function. 
Reminder: 

– CFG nodes are the statements of the function, 
– CFG edges represent the flow of control: an edge from n1 to n2 means that 

control can flow immediately from n1 to n2.

Analysis #2: 
live variables

Live variable

A variable is said to be live at a given point if its value will be read later: 
– clearly undecidable, but 
– dataflow analysis can compute an approximation. 

Liveness can be used to allocate registers, for example: a set of variables that 
are never live at the same time can share a single register.



Intuitions

Intuitively: 
– a variable is live after a node if it is live before any of its successors, 
– a variable is live before node n if it is either read by n, or live after n and not 

written by n, 
– no variable is live after an exit node.

Equations

We associate to every node n a pair of variables (in,on) that give the set of 
variables that are live when the node is entered or exited, respectively, defined 
as follows: 
in = genLV(n) ⋃ (on \ killLV(n))  
where genLV(n) is the set of variables read by n, and killLV(n) is the set of 
variables written by n. 

on = is1 ⋃ is2 ⋃ … ⋃ isk 
where s1 … sk are the successors of n. 

Substituting on in in, we get: 
in = genLV(n) ⋃ [(is1 ⋃ is2 ⋃ … ⋃ isk) \ killLV(n)]

Equation solving

We want the sets of live variables to be as small as possible. 
Therefore we initialize all sets to the empty set.

Example
equations

i1 = i2 \ {x} 
i2 = i3 \ {y} 
i3 = {x, y} ∪ (i4 ∪ i5) 
i4 = {x} ∪ (i6 \ {z}) 
i5 = {y} ∪ (i6 \ {z}) 
i6 = {z}

solution

i1 = {} 
i2 = {x} 
i3 = {x, y} 
i4 = {x} 
i5 = {y} 
i6 = {z}

CFG
1 x=read-int

2 y=read-int

3 if x<y

4 z=x 5 z=y

6 print z



Using live variables
Neither x nor y is live at the same time as z. 
Therefore, z can be replaced by x or y.

original CFG
1 x=read-int

2 y=read-int

3 if x<y

4 z=x 5 z=y

6 print z

optimized CFG
x=read-int

y=read-int

if x<y

y=x

print y

analysis result
i1 = {} 
i2 = { x } 
i3 = { x, y } 
i4 = { x } 
i5 = { y } 
i6 = { z }

Analysis #3: 
reaching definitions

Reaching definitions

The reaching definitions for a program point are the assignments that may 
have defined the values of variables at that point. 
Can be approximated using dataflow analysis, and the result used to perform 
constant propagation, for example.

Intuitions

Intuitively: 
– a definition reaches the beginning of a node if it reaches the exit of any of 

its predecessors, 
– a definition contained in a node n always reaches the end of n itself, 
– a definition reaches the end of a node n if it reaches the beginning of n and 

is not killed by n itself. 
(A node n kills a definition d if and only if n is a definition and defines the same 
variable as d.) 
For now, we assume no definition reaches the beginning of the entry node.



Equations

We associate to every node n a pair of variables (in,on) that give the set of 
definitions reaching the entry and exit of n, respectively, defined as follows: 
in = op1 ∪ op2 ∪ … ∪ opk 
where p1 … pk are the predecessors of n. 

on = genRD(n) ∪ (in \ killRD(n)) 
where genRD(n) is {(x,n)} if n is a definition of variable x, {} otherwise, and 
killRD(n) is the set of definitions defining the same variable as n itself. 

Substituting in in on, we get: 
on = genRD(n) ∪ [(op1 ∪ op2 ∪ … ∪ opk) \ killRD(n)]

Equation solving

We want the sets of reaching definitions to be as small as possible. 
Therefore we initialize all sets to the empty set.

Example
CFG
x=100

y=3

z=0

x=x-1

z=z+y

if x>0

print z

1

2

3

4

5

equations
o1={(x,1)} 
o2={(y,2)} ∪ o1↓y 
o3={(z,3)} ∪ o2↓z 
o4={(x,4)} ∪ (o3 ∪ o6)↓x 
o5={(z,5)} ∪ o4↓z 
o6=o5 
o7=o6

solution
o1={(x,1)} 
o2={(x,1), (y,2)} 
o3={(x,1), (y,2), (z,3)} 
o4={(x,4), (y,2), (z,3), (z,5)} 
o5={(x,4), (y,2), (z,5)} 
o6={(x,4), (y,2), (z,5)} 
o7={(x,4), (y,2), (z,5)}

Notation: 
S↓x = S \ {all definitions of x}6

7

Using reaching definitions
A single constant definition of y reaches node 5. 
Therefore, y can be replaced by 3 in it.

original CFG
x=100

y=3

z=0

x=x-1

z=z+y

if x>0

print z
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analysis result optimized 
CFGx=100

y=3

z=0

x=x-1

z=z+3

if x>0

print z

o1={(x,1)} 
o2={(x,1), (y,2)} 
o3={(x,1), (y,2), (z,3)} 
o4={(x,4), (y,2), (z,3), (z,5)} 
o5={(x,4), (y,2), (z,5)} 
o6={(x,4), (y,2), (z,5)} 
o7={(x,4), (y,2), (z,5)}



Uninitialized variables
Note: if uninitialized variables are allowed, the above analysis can produce 
incorrect results.

CFG
x=100

y=3

z=0

x=x-1

z=z+y

if x>0

1
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equations

o1={(x,1)} 
o2={(z,2)} ∪ o1↓z 
o3={(x,3)} ∪ (o2 ∪ o6)↓x 
o4={(z,4)} ∪ o3↓z 
o5={(y,5)} ∪ o4↓y 
o6=o5

solution

o1={(x,1)} 
o2={(x,1), (z,2)} 
o3={(x,3), (y,5), (z,2), (z,4)} 
o4={(x,3), (y,5), (z,4)} 
o5={(x,3), (y,5), (z,4)} 
o6={(x,3), (y,5), (z,4)}

We might think that y can be replaced by the value 
3 in node 4, as before, but it's wrong!

Uninitialized variables
Solution: record all variables as “initialized in some unknown location” at the 
entry of the first node!

CFG
x=100

y=3

z=0

x=x-1

z=z+y

if x>0

1
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equations

o1={(x,1), (y,?), (z,?)} 
o2={(z,2)} ∪ o1↓z 
o3={(x,3)} ∪ (o2 ∪ o6)↓x 
o4={(z,4)} ∪ o3↓z 
o5={(y,5)} ∪ o4↓y 
o6=o5

solution

o1={(x,1), (y,?), (z,?)} 
o2={(x,1), (z,2)} 
o3={(x,3), (y,?), (y,5), …} 
o4={(x,3), (y,?), (y,5), (z,4)} 
o5={(x,3), (y,5), (z,4)} 
o6={(x,3), (y,5), (z,4)}

Analysis #4: 
very busy 

expressions

Very busy expression

An expression is very busy at some program point if it will definitely be 
evaluated before its value changes. 
Can be approximated by dataflow analysis, and the result used to perform 
code hoisting: the computation of a very busy expression can be performed at 
the earliest point where it is busy.



Intuitions

Intuitively: 
– an expression is very busy after a node if it is very busy in all of its 

successors, 
– an expression is very busy before node n if it is either evaluated by n itself, 

or very busy after n and not killed by n, 
– no expression is very busy after an exit node. 

(A node kills an expression e iff it redefines a variable appearing in e.) 

Equations

We associate to every node n a pair of variables (in,on) that give the set of 
expressions that are very busy when the node is entered or exited, 
respectively, defined as follows: 
in = genVB(n) ⋃ (on \ killVB(n)) 
where genVB(n) is the set of expressions evaluated by n, and killVB(n) is the 
set of expressions killed by n, 

on = is1 ∩ is2 ∩ … ∩ isk 
where s1 … sk are the successors of n. 

Substituting on in in, we get: 
in = genVB(n) ⋃ [(is1 ∩ is2 ∩ … ∩ isk) \ killVB(n)]

Equation solving

We want the sets of very busy expressions to be as large as possible. 
Therefore we initialize all sets to the set of all non-trivial expressions of the 
function.

Example
CFG

t=a+b

u=a*b

if t<u

1

2

3

t=a-b u=a-b

t=t*u

4 5

6

equations

i1={a+b} ∪ i2↓t 
i2={a*b} ∪ i3↓u 
i3=i4 ∩ i5 
i4={a-b} ∪ i6↓t 
i5={a-b} ∪ i6↓u 
i6={t*u}

solution

i1={a+b, a-b, a*b} 
i2={a-b, a*b} 
i3={a-b} 
i4={a-b} 
i5={a-b} 
i6={t*u}

Notation: 
S↓x = S \ {all expressions using x}



Using very busy expressions
Expression a-b is very busy before the conditional. 
Therefore, it can be evaluated earlier.

original CFG

t=a+b

u=a*b

if t<u

1

2

3

t=a-b u=a-b

t=t*u

4 5

6

analysis result
i1={a-b, a*b, a+b} 
i2={a-b, a*b} 
i3={a-b} 
i4={a-b} 
i5={a-b} 
i6={t*u}

optimized CFG
t=a+b

u=a*b

if t<u

t=v u=v

t=t*u

v=a-b

Classification of 
dataflow analyses

Equations summary

Analysis Input equation Output equation

available 
expressions in = op1 ∩ op2 ∩ … ∩ opk on = genAE(n) ∪ (in \ killAE(n))

live variables in = genLV(n) ⋃ (on \ killLV(n)) on = is1 ⋃ is2 ⋃ … ⋃ isk

reaching 
definitions in = op1 ⋃ op2 ⋃ … ⋃ opk on = genRD(n) ⋃ (in \ killRD(n))

very busy 
expressions in = genVB(n) ⋃ (on \ killVB(n)) on = is1 ∩ is2 ∩ … ∩ isk

Taxonomy

Forward vs backward: 
– Forward analyses: the property of a node depends on those of its 

predecessors. 
– Backward analyses: the property of a node depends on those if its 

successors. 
May vs must: 

– Must analyses: a property must be true in all neighbors to be true in a 
node. 

– May analyses: a property must be true in at least one neighbor to be true 
in a node.



Taxonomy

Forward Backward

Must available expressions very busy expressions

May reaching definitions live variables

Speeding-up 
dataflow analyses

Speeding-up analyses

Dataflow analyses can be sped up by: 
– a work-list algorithm, avoiding useless computations, 
– equations ordering, speeding-up propagation, 
– smaller CFGs using basic blocks, 
– bit-vectors to represent sets.

Running example
To illustrate speed-up techniques, we reuse the live variables example:

equations
i1 = i2 \ {x} 
i2 = i3 \ {y} 
i3 = {x, y} ∪ (i4 ∪ i5) 
i4 = {x} ∪ (i6 \ {z}) 
i5 = {y} ∪ (i6 \ {z}) 
i6 = {z}

solution
i1 = {} 
i2 = {x} 
i3 = {x, y} 
i4 = {x} 
i5 = {y} 
i6 = {z}

CFG
1 x=read-int

2 y=read-int

3 if x<y

4 z=x 5 z=y

6 print z



Base case: iteration
Computation by iteration: 3 iterations with 6 computations each, for a total of 
18 computations.

Iteration i1 i2 i3 i4 i5 i6

0 { } { } { } { } { } { }
1 { } { } { x, y } { x } { y } { z }
2 { } { x } { x, y } { x } { y } { z }
3 { } { x } { x, y } { x } { y } { z }

i1 = i2\{x}, i2 = i3\{y}, i3 = {x,y} ∪ (i4 ∪ i5), 
i4 = {x} ∪ (i6\{z}), i5 = {y} ∪ (i6\{z}), i6 = {z}

Work-list algorithm

Work-list algorithm: 
– remember, for every variable v, the set dep(v) of the variables whose value 

depends on v, 
– whenever some variable v changes, only re-compute the variables that 

belong to dep(v).

Work-list algorithm in Scala
def solve[T](eqs: Seq[(Int => T) => T], 
             dep: Int => List[Int], 
             init: T): (Int => T) = { 
  def loop(q: List[Int], sol: Map[Int,T]): (Int => T) = q match { 
    case i :: is => 
      val y = eqs(i)(sol) 
      if (y == sol(i)) 
        loop(is, sol) 
      else 
        loop(is ::: (dep(i) diff q), sol + i->y) 
    case Nil => 
      sol 
  } 
  loop(List.range(0, eqs.length), Map.empty withDefaultValue init) 
}

Work-list
It. q i1 i2 i3 i4 i5 i6

0 [i1,i2,i3,i4,i5,i6] {} {} {} {} {} {}
1 [i2,i3,i4,i5,i6] {} {} {} {} {} {}
2 [i3,i4,i5,i6] {} {} {} {} {} {}
3 [i4,i5,i6,i2] {} {} {x,y} {} {} {}
4 [i5,i6,i2,i3] {} {} {x,y} {x} {} {}
5 [i6,i2,i3] {} {} {x,y} {x} {y} {}
6 [i2,i3,i4,i5] {} {} {x,y} {x} {y} {z}
7 [i3,i4,i5,i1] {} {x} {x,y} {x} {y} {z}
8 [i4,i5,i1] {} {x} {x,y} {x} {y} {z}
9 [i5,i1] {} {x} {x,y} {x} {y} {z}

10 [i1] {} {x} {x,y} {x} {y} {z}
11 [] {} {x} {x,y} {x} {y} {z}

i1 = i2\{x}, i2 = i3\{y}, i3 = {x,y} ∪ (i4 ∪ i5), 
i4 = {x} ∪ (i6\{z}), i5 = {y} ∪ (i6\{z}), i6 = {z}



Node ordering

The work-list algorithm needs "only" 11 computations, but: 
– would be faster with work-list reversed, 
– that's because live variables is a backward analysis. 

Node ordering orders the elements of the work-list so that the solution is 
computed as fast as possible.

(Reverse) post-order
Backward analyses: use post-order traversal of CFG. 
Forward analyses: use reverse post-order traversal of CFG.

CFG
1

2

3

4 5

6

Post-order: 
  6 5 4 3 2 1  or  6 4 5 3 2 1 
Reverse post-order: 
  1 2 3 4 5 6  or  1 2 3 5 4 6

Note: reverse post-order is not the same as pre-order! 
Pre-order: 
  1 2 3 4 6 5  or  1 2 3 5 6 4

Post-order work-list

Post-order work-list: only 6 computations required.

It. q i1 i2 i3 i4 i5 i6

0 [i6,i5,i4,i3,i2,i1] {} {} {} {} {} {}
1 [i5,i4,i3,i2,i1] {} {} {} {} {} {z}
2 [i4,i3,i2,i1] {} {} {} {} {y} {z}
3 [i3,i2,i1] {} {} {} {x} {y} {z}
4 [i2,i1] {} {} {x,y} {x} {y} {z}
5 [i1] {} {x} {x,y} {x} {y} {z}
6 [] {} {x} {x,y} {x} {y} {z}

i1 = i2\{x}, i2 = i3\{y}, i3 = {x,y} ∪ (i4 ∪ i5), 
i4 = {x} ∪ (i6\{z}), i5 = {y} ∪ (i6\{z}), i6 = {z}

Basic blocks

CFG nodes can be basic blocks instead of instructions: 
– reduces the size of the CFG, 
– variables are attached to basic blocks, not instructions, 
– computing the solution for instructions is easy given that for basic blocks.



CFG with basic blocks
equations

i1 = (i2 ∪ i3) \ {x, y} 
i2 = {x} ∪ (i4 \ {z}) 
i3 = {y} ∪ (i4 \ {z}) 
i4 = {z}

solution

i1 = {} 
i2 = {x} 
i3 = {y} 
i4 = {z}

The solution for individual 
instructions is computed from the 
basic-block solution, in a single 
pass — here backwards: 
i1c = {x, y} ∪ (i2 ∪ i3) = {x, y} 
i1b = i1c \ {y} = {x} 
i1a = i1b \ {x} = {}

CFG

1
x=read-int 
y=read-int 

if x<y

2 z=x 3 z=y

4 print z

1a
1b
1c

Bit vectors

All dataflow analyses we have seen work on sets of values. If they are dense, 
represent them as bit vectors: 

– uses only one bit per element, 
– union is "bitwise or", 
– intersection is "bitwise and", 
– complement is "bitwise inversion", 
– etc.

Bit vectors example
original equations
i1 = i2 \ {x} 
i2 = i3 \ {y} 
i3 = {x, y} ∪ (i4 ∪ i5) 
i4 = {x} ∪ (i6 \ {z}) 
i5 = {y} ∪ (i6 \ {z}) 
i6 = {z}

bit vector equations
i1 = i2 & ~100 
i2 = i3 & ~010 
i3 = 110 | (i4 | i5) 
i4 = 100 | (i6 & ~001) 
i5 = 010 | (i6 & ~001) 
i6 = 001

bit vector solution
i1 = 000 
i2 = 100 
i3 = 110 
i4 = 100 
i5 = 010 
i6 = 001

original solution
i1 = {} 
i2 = {x} 
i3 = {x, y} 
i4 = {x} 
i5 = {y} 
i6 = {z}

Summary

Dataflow analysis is a framework that can be used to approximate various 
programs properties, e.g.: 

– liveness, 
– available expressions, 
– very busy expressions, 
– reaching definitions. 

These approximations can be used for optimizations like: 
– register allocation, 
– constant propagation, 
– etc.


