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Project overview

As the semester progresses, you will get: 
– parts of an L3 compiler written in Scala, and 
– parts of a virtual machine, written in C. 

You will have to: 
– do one non-graded, warm-up exercise, 
– complete the compiler, 
– complete the virtual machine.
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The L3 language
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The L3 language

L3 is a Lisp-like language. Its main characteristics are: 
– it is “dynamically typed”, 
– it is functional: 

– functions are first-class values, and can be nested, 
– there are few side-effects (exceptions: mutable blocks and I/O), 

– it automatically frees memory, 
– it is simple but quite powerful.
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A taste of L3

An L3 function to compute xy for x ∈ ℤ, y ∈ ℕ: 
(defrec pow 
  (fun (x y) 
       (cond ((= 0 y) 
              1) 
             ((even? y) 
              (let ((t (pow x (/ y 2)))) 
                (* t t))) 
             (#t 
              (* x (pow x (- y 1)))))))

x0 = 1

x2z = (xz)2

xz+1 = x(xz)
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Values

L3 offers four types of atomic values: 
1. unit, 
2. booleans, 
3. characters, represented by their Unicode code point, 
4. integers, 31 bits [!] in two's complement. 

and one type of composite value: tagged blocks.
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Literal values

"c1…cn" 
String literal (translated to a block expression, see later). 
'c' 
Character literal. 

… -2 -1 0 1 2 3 … 
Integer literals (also in base 16 with #x prefix, or in base 2 with #b prefix). 
#t #f 
Boolean literals (true and false, respectively). 
#u 
Unit literal.
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Top-level definitions

(def n e) 
Top-level non-recursive definition. The expression e is evaluated and its value 
is bound to name n in the rest of the program. The name n is not visible in 
expression e. 
(defrec n f) 
Top-level recursive function definition. The function expression f is evaluated 
and its value is bound to name n in the rest of the program. The function can 
be recursive, i.e. the name n is visible in the function expression f.
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Local definitions
(let ((n1 e1) …) b1 b2 …) 
Parallel local value definition. The expressions e1, … are evaluated in that 
order, and their values are then bound to names n1, … in the body b1, b2, … 
The value of the whole expression is the value of the last bi. 
(let* ((n1 e1) …) b1 b2 …) 
Sequential local value definition. Equivalent to a nested sequence of let: 
(let ((n1 e1)) (let (…) …)) 
(letrec ((n1 f1) …) b1 b2 …) 
Recursive local function definition. The function expressions f1, … are 
evaluated and bound to names n1, … in the body b1, b2 … The functions can 
be mutually recursive.
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Conditional expressions

(if e1 e2 e3) 
Two-ways conditional. If e1 evaluates to a true value (i.e. anything but #f), e2 is 
evaluated, otherwise e3 is evaluated. The value of the whole expression is the 
value of the evaluated branch. 
The else branch, e3, is optional and defaults to #u (unit). 
(cond (c1 b1,1 b1,2 …) (c2 b2,1 b2,2 …) …) 
N-ways conditional. If c1 evaluates to a true value, evaluate b1,1, b1,2 …; else, if 
c2 evaluates to a true value, evaluate b2,1, b2,2 …; etc. The value of the whole 
expression is the value of the evaluated branch or #u if none of the 
conditions are true.
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Logical expressions

(and e1 e2 e3 …) 
Short-cutting conjunction. If e1 evaluates to a true value, proceed with the 
evaluation of e2, and so on. The value of the whole expression is that of the 
last evaluated ei. 
(or e1 e2 e3 …) 
Short-cutting disjunction. If e1 evaluates to a true value, produce that value. 
Otherwise, proceed with the evaluation of e2, and so on. 
(not e) 
Negation. If e evaluates to a true value, produce the value #f. Otherwise, 
produce the value #t.
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Loops and blocks

(rec n ((n1 e1) …) b1 b2 …) 
General loop. Equivalent to: 
  (letrec ((n (fun (n1 …) b1 b2 …))) 
    (n e1 …)) 
(begin b1 b2 …) 
Sequential evaluation. First evaluate expression b1, discarding its value, then 
b2, etc. The value of the whole expression is the value of the last bi.
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Functions and primitives
(fun (n1 …) b1 b2 …) 
Anonymous function with arguments n1, … and body b1, b2, … The return 
value is the value of the last bi. 
(e e1 …) 
Function application. Expressions e, e1, … are evaluated in order, and then 
the value of e — which must be a function — is applied to the value of e1, … 
Note: if e is a simple identifier, a special form of name resolution, based on 
arity, is used — see later. 
(@ p e1 e2 …) 
Primitive application. First evaluate expressions e1, e2, … in that order, and 
then apply primitive p to the value of these expressions.
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Arity-based name lookup

A special name lookup rule is used when analysing a function application in 
which the function is a simple name: 
(n e1 e2 … ek) 

In such a case, the name n@k (i.e. the name itself, followed by @, followed by 
the arity in base 10) is first looked up, and used instead of n instead if it exists. 
Otherwise, name analysis proceeds as usual. 
This allows a kind of overloading based on arity (although it is not overloading 
per se). 
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Arity-based name lookup
Arity-based name lookup can for example be used to define several functions 
to create lists of different lengths: 
(def list-make@1 (fun (e1) …)) 
(def list-make@2 (fun (e1 e2) …)) 
and so on for list-make@3, list-make@4, etc. 

With these definitions, the following two function applications are both valid: 
1. (list-make 1) (invokes list-make@1), 
2. (list-make 1 (+ 2 3)) (invokes list-make@2). 

However, the following one is not valid, unless a definition for the bare name 
list-make also appears in scope: 
(map list-make l)
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Primitives

L3 offers the following primitives: 
– integer: < <= + - * / % 
– integer: shift-left shift-right and or xor 
– polymorphic: = id 
– type tests: block? int? char? bool? unit? 
– character: char->int int->char 
– I/O: byte-read byte-write 
– tagged blocks: block-alloc-n 
block-tag block-length block-get block-set!

identity

0 ≤ n ≤  255

truncated division/remainder
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Tagged blocks
L3 offers a single kind of composite values: tagged blocks. They are 
manipulated with the following primitives: 
(@ block-alloc-n s) 
Allocates an uninitialised block with tag n and length s. 
(@ block-tag b) 
Returns the tag of block b (as an integer). 
(@ block-length b) 
Returns the length of block b. 
(@ block-get b n) 
Returns the nth element (0-based) of block b. 
(@ block-set! b n v) 
Sets the nth element (0-based) of block b to v.
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Using tagged blocks

Tagged blocks are a low-level data structure. They are not meant to be used 
directly in programs, but rather as a means to implement more sophisticated 
data structures like strings, arrays, lists, etc. 
The valid tags range from 0 to 255, inclusive. Tags ≥ 200 are reserved by the 
compiler, while the others are available for general use. (For example, our L3 
library uses a few tags to represent arrays, lists, etc.)
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Valid primitive arguments
Primitives only work correctly when applied to certain arguments, otherwise 
their behaviour is undefined.  
+ - * and or xor : int × int ⇒ int 

shift-left shift-right : int × (int ∈ {0, 1, …, 31}) ⇒ int 

/ % : int × (int ≠ 0) ⇒ int 

< <= : int × int ⇒ bool 

= : ∀α, β. α × β ⇒ bool 

id : ∀α. α ⇒ α 

int->char : int ∈ { valid Unicode code-points } ⇒ char 

char->int : char ⇒ int
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Valid primitive arguments

block? int? char? bool? unit? : ∀α. α ⇒ bool 

byte-read : ⇒ int ∈ { –1, 0, 1, …, 255 } 

byte-write : int ∈ { 0, 1, …, 255 } ⇒ ? 

block-alloc-n : int ⇒ block 

block-tag block-length : block ⇒ int 

block-get : ∃α. block × int ⇒ α 

block-set! : ∀α. block × int × α ⇒ ?

arbitrary 
return value
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Undefined behaviour

The fact that primitives have undefined behaviour when applied to invalid 
arguments means that they can do anything in such a case. 
For example, division by zero can produce an error, crash the program, or 
produce an arbitrary value like 0.
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Grasping the syntax
Like all Lisp-like languages, L3 “has no syntax”, in that its concrete syntax is very 
close to its abstract syntax. 
For example, the L3 expression on the left is almost a direct transcription of a 
pre-order traversal of its AST on the right, in which nodes are parenthesised 
and tagged, while leaves are unadorned.

(if (@ < x 0) 
  (@ - 0 x) 
  x)

if

@ ident(x)

ident(x)
int(0)<

@

ident(x)
int(0)

–
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L3 EBNF grammar (1)
program ::= { def | defrec | expr } expr 
def ::= (def ident expr) 
defrec ::= (defrec ident fun) 
expr ::= fun | let | let* | letrec | rec | begin | if | cond | and | or | not 
  | app | prim | ident | num | str | chr | bool | unit 
exprs ::= expr { expr } 
fun ::= (fun ({ ident }) exprs) 
let ::= (let ({ (ident expr) }) exprs) 
let* ::= (let* ({ (ident expr) }) exprs) 
letrec ::= (letrec ({ (ident fun) }) exprs) 
rec ::= (rec ident ({ (ident expr) }) exprs) 
begin ::= (begin exprs) 
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L3 EBNF grammar (2)

if ::= (if expr expr [ expr ]) 
cond ::= (cond (expr exprs) {(expr exprs)}) 
and ::= (and expr expr { expr }) 
or ::= (or expr expr { expr }) 
not ::= (not expr) 
app ::= (expr { expr }) 
prim ::= (@ prim-name { expr })
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L3 EBNF grammar (3)

str ::= "{any character except newline}" 
chr ::= 'any character' 
bool ::= #t | #f 
unit ::= #u 
ident ::= identstart { identstart | digit } [@ digit { digit }] 
identstart ::= a | … | z | A  | … | Z | | | ! | % | & | * | + | – 
  | . | / | : | < | = | > | ? | ^ | _ | ~ 
prim-name ::= block-tag | block-alloc-n | etc.

0 ≤ n < 200
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L3 EBNF grammar (4)

num ::= num2 | num10 | num16 
num2 ::= #b digit2 { digit2 } 
num10 ::= [–] digit10 { digit10 } 
num16 ::= #x digit16 { digit16 } 
digit2 ::= 0 | 1 
digit10 ::= digit2 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 
digit16 ::= digit10 | A | B | C | D | E | F | a | b | c | d | e | f
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Exercise

Write the L3 version of the factorial function, defined as: 
fact(0) = 1 
fact(n) = n · fact(n – 1)  [if n > 0] 

What does the following (valid) L3 program compute? 
((fun (f x) (f x)) 
 (fun (x) (@+ x 1)) 
 20)
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L3 syntactic sugar
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L3 syntactic sugar

L3 has a substantial amount of syntactic sugar: constructs that can be 
syntactically translated to other existing constructs. Syntactic sugar does not 
offer additional expressive power to the programmer, but some syntactical 
convenience. 
For example, L3 allows if expressions without an else branch, which is 
implicitly taken to be the unit value #u: 
(if e1 e2) ⇔ (if e1 e2 #u)
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Desugaring

Syntactic sugar is typically removed very early in the compilation process — 
e.g. during parsing — to simplify the language that the compiler has to handle. 
This process is known as desugaring. 
Desugaring can be specified as a function denoted by ⟦·⟧ taking an L3 term 
and producing a desugared CL3 term (CL3 is Core L3, the desugared version of 
L3). To clarify the presentation, L3 terms appear in orange, CL3 terms in green, 
and meta-terms in black.
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L3 desugaring (1)
To simplify the specification of desugaring for whole programs, we assume 
that all top-level expressions are wrapped sequentially in a single 
(program …) expression. 
⟦(program (def n e) s1 s2 …)⟧ = 
  (let ((n ⟦e⟧)) ⟦(program s1 s2 …)⟧) 
⟦(program (defrec n e) s1 s2 …)⟧ = 
  (letrec ((n ⟦e⟧)) ⟦(program s1 s2 …)⟧) 
⟦(program e s1 s2 …)⟧ = 
  ⟦(begin e (program s1 s2 …))⟧ 
⟦(program e)⟧ = 
  ⟦e⟧
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L3 desugaring (2)

Desugaring sometimes requires the creation of fresh names, i.e. names that 
do not appear anywhere else in the program. Their binding occurrence is 
underlined in the rules, as illustrated by the one below. 
⟦(begin b1 b2 b3 …)⟧ = 
  (let ((t ⟦b1⟧)) ⟦(begin b2 b3 …)⟧) 
⟦(begin b)⟧ = 
  ⟦b⟧
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L3 desugaring (3)

⟦(let ((n1 e1) …) b1 b2 …)⟧ = 
  (let ((n1 ⟦e1⟧) …) ⟦(begin b1 b2 …)⟧) 
⟦(let* ((n1 e1) (n2 e2) …) b1 b2 …)⟧ = 
  ⟦(let ((n1 e1)) (let* ((n2 e2) …) b1 b2 …))⟧ 
⟦(let* () b1 b2 …)⟧ = 
  ⟦(begin b1 b2 …)⟧ 
⟦(letrec ((f1 (fun (n1,1 …) b1,1 b1,2 …)) …) b1 b2 …)⟧ = 
  (letrec ((f1 (fun (n1,1 …) ⟦(begin b1,1 b1,2 …)⟧))  
            …) 
    ⟦(begin b1 b2 …)⟧)
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L3 desugaring (4)

⟦(fun (n1 …) b1 b2 …)⟧ = 
  (letrec ((f (fun (n1 …) ⟦(begin b1 b2 …)⟧))) 
    f) 
⟦(rec n ((n1 e1) …) b1 b2 …)⟧ = 
  (letrec ((n (fun (n1 …) ⟦(begin b1 b2 …)⟧))) 
    (n ⟦e1⟧ …)) 
⟦(e e1 …)⟧ = 
  (⟦e⟧ ⟦e1⟧ …) 
⟦(@ p e1 …)⟧ = 
  (@ p ⟦e1⟧ …)
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L3 desugaring (5)

⟦(if e e1)⟧ = 
  ⟦(if e e1 #u)⟧ 
⟦(if e e1 e2)⟧ = 
  (if ⟦e⟧ ⟦e1⟧ ⟦e2⟧) 
⟦(cond (e1 b1,1 b1,2 …) (e2 b2,1 b2,2 …) …)⟧ = 
  ⟦(if e1 (begin b1,1 b1,2 …) (cond (e2 b2,1 b2,2 …) …))⟧ 
⟦(cond ())⟧ = 
  #u
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L3 desugaring (6)
⟦(and e1 e2 e3 …)⟧ = 
  ⟦(if e1 (and e2 e3 …) #f)⟧ 
⟦(and e)⟧ = 
  ⟦e⟧ 
⟦(or e1 e2 e3 …)⟧ = 
  ⟦(let ((v e1)) (if v v (or e2 e3 …)))⟧ 
⟦(or e)⟧ = 
  ⟦e⟧ 
⟦(not e)⟧ = 
  ⟦(if e #f #t)⟧ 
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L3 desugaring (7)
L3 does not have a string type. It offers string literals, though, which are 
desugared to blocks of characters. 
⟦"c1…cn"⟧ = 
  ⟦(let ((s (@block-alloc-200 n))) 
    (@block-set! s 0 'c1') 
    … 
    s)⟧ 
⟦l⟧ = if l is a (non-string) literal 
  l 
⟦n⟧ = if n is a name 
  n

the (reserved) 
tag 200 is used for 

strings
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L3 desugaring example
⟦(program (@byte-write (if #t 79 75)) 
          (@byte-write (if #f 79 75)))⟧ 
= ⟦(begin (@byte-write (if #t 79 75)) 
          (program 
            (@byte-write (if #f 79 75))))⟧ 
= (let ((t ⟦(@byte-write (if #t 79 75))⟧)) 
    ⟦(begin 
       (program 
         (@byte-write (if #f 79 75))))⟧) 
= (let ((t (@byte-write (if #t 79 75)))) 
    (@byte-write (if #f 79 75))) 
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Exercise

Desugar the following L3 expression : 
(rec loop ((i 1)) 
   (int-print i) 
   (if (< i 9) 
       (loop (+ i 1))))

39

The L3 compiler
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L3 compiler architecture

+ interpreters for CL3, CPS and ASM 
languages

Scanner

Parser

Name analyzer

char. stream

token stream

CL3 tree

CL3 tree

Register allocator

ASM converter

CPS tree

CPS tree

ASM file

CPS converter

Value representer

CL3 tree

CPS tree

CPS tree

Front-end Back-end

Note: CL3, CPS and ASM each designate a family of very 
similar languages, with minor differences between them.
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Intermediate languages
The L3 compiler manipulates a total of four (families of) languages: 

1. L3 is the source language that is parsed, but never exists as a tree — it is 
desugared to CL3 immediately, 

2. CL3 — a.k.a. CoreL3 — is the desugared version of L3, 
3. CPS is the main intermediate language, on which optimizations are 

performed, 
4. ASM is the assembly language of the target (virtual) machine. 

The compiler contains interpreters for the last three languages, which is useful 
to check that a program behaves in the same way as it is undergoes 
transformation. 
These interpreters also serve as semantics for their language.
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