Values
representation

Advanced Compiler Construction
Michel Schinz —2021-03-11

The problem

Values representation

The values representation problem: how to represent the values of the
source language in the target language?
Trivial in C and similar languages that have:

- no parametric polymorphism, and

- types corresponding directly to those of the target language (e.g. int,
long, double),

More difficult in languages that have either:

- parametric polymorphism, as exact types are not at compilation time, or
- dynamic types, for the same reason, or

- types not corresponding directly to those of the target.

Example

Consider the following L3 function:
(def pair-make
(fun (f s)
(let ((p (@block-alloc-0 2)))
(@block-set! p 0 f)
(@block-set! p 1 s)
P)))
The Lz compiler knows nothing about the type of f and s, so some uniform
representation must be used.

Example

The same problem exists in Scala when using parametric polymorphism:
def pairMake[T,U](f: T, s: U): Pair[T,U] =
new Pair[T,U](f, s)

The solutions

Boxing

Boxing: all values are represented uniformly by a pointer to a heap-allocated
block called a box and containing:

- the value,

- some information about its type.
Pros and cons:

- simple,

- very costly for small values (e.g. integers).

Tagging

Tagging: all values are represented uniformly by a pointer-sized word
containing either:

- a pointer to a boxed value, as before, or

- a small value (e.g. integer) with a tag identifying its type.
Pros and cons:

- simple,

- less costly than boxing,

- reduced range for some small values (e.g. integers).

Example: integer tagging

Integer tagging example: represent the source integer n as the target integer
2n+ 1.

- distinguishable from (aligned) pointer by LSB,
- slightly reduced range (1 bit less).

Example: NaN tagging

IEEE 754 floating-point values (i.e. double) have special NaN values, returned
on error, identified by top 12 bits:

1 1 1 ? ? ? ? ?
12 bits (must be 1) 52 arbitrary bits
NaN tagging:

- represent doubles as themselves,

- use 52 lower bits of NaNs to store tagged values:
- pointers,
- integers,
- etc.

On-demand boxing

(Un)boxing can be done on-demand for statically-typed languages:
- box when entering polymorphic context,
- unbox when returning to monomorphic context.
Pros and cons:
- no penalty for monomorphic code,
- can be expensive at runtime.
Also doable for dynamically-typed languages, but requires type inference.

Specialization

Specialization (or monomorphization): get back to simple case by
translating polymorphism away.
For example, if List[Int] appears in a program, a class representing lists of
integers is generated.
Pros and cons:

- avoids the cost of boxing and tagging,

- produces lots of code,

- can fail to terminate.

Partial specialization

Partial specialization:

- share specialized code as much as possible (e.g. specialize only once for all

reference types), and/or
- allow the programmer to specify when to specialize, and box otherwise.
Pros and cons:

- can provide the performance of specialization for critical code without the

cost.

Comparing solutions

Three representations of an object containing:
- the integer 25,
- the double 3.14
- the string "hello".
boxed with
fully boxed integer tagging (fully) specialized

— 51 25
—13,14 — 13,14 |
— > lhle[Ut] —7=> et

—1 hlefUuo

Translation of operations

Independently of the chosen solution, operations acting on source values
must be adapted to the representation, e.g.:
- addition of boxed integers is done by:
1. fetching the two integers from their box,
2. adding them,
3. allocating a new box, storing the resultin it.
- addition of tagged integers is done by:
1. untagging the two integers,
2. adding them,
3. tagging the result.
For tagging, one can do better though!

Tagged integer arithmetic

[n+ml=2[([n]-1)/2+([mI-1)/2]+1
=([n1-1)+(ImI-1)+1
=[n]+[m]-1

[In-m1=2[([n]1-1)/2-(ImI-1)/2]+1
=([n1-1)-(ml-1)+1
=[n]-ImI+1

[nxml=2[(([n1-1)/2) > (Im1-1)/2)]+1
=([n1-1) x ((ImI-1)/2)+1
=([n1-1) x (Im1> 1)+ 1

L; values
representation

Representation of L3 values

Ls has the following kinds of values:
. functions,
. tagged blocks,
. integers,
. characters,
. booleans,
6. unit.
For now, we assume (incorrectly!) that functions are simple code pointers.
Tagged blocks are represented as pointers to themselves.
Integers, characters, booleans and the unit value are tagged.

a b W N -

L3 tagging scheme

In L3, we require the two LSBs of pointers to be 0, in order to use the tagging
scheme below:

Kind of value LSBs

Integer 2
Block (pointer) ...00,
Character ...1102
Boolean ...1010,
Unit ...0010,

Values representation phase

The values representation phase of the L3 compiler:
- takes a "high-level" CPS program:
- values: all L3 values,
- primitives: all L3 primitives,
- produces an equivalent "low-level" CPS program:
- values: bit vectors and pointers (both 32 bits),
- primitives: instructions of the VM (similar to typical processor).
Specified as usual as a transformation function called [-], mapping high-level
CPS terms to their low-level equivalent.

Atoms

[n] where nis a name =
n
[il where iis an integer literal =
2i+1
[c] where cis a character literal =
(code-point(c) « 3)| 110;
[#tl =
11010,
[#f1=
01010,
[#ul =
0010,

Continuations & functions

Continuations are restricted enough that they don't need to be translated:
[(letc ((c1 (ent (n1q...) er)) ...) e)l=
(lete ((c1 (ent (nmg...) Ted)) ...) [eD)
[(appc n vi...)]=
(appe n [vil...)
Functions must be translated, but we ignore it for now (see next lecture) and
assume the following incorrect translation:
[(lets ((fi (fun (c1 na...) er))...) e)l=
(lets ((f1 (fun (c1 nip...) [eaD)) ...) [el)
[(appsr v nc vi ...)]=
(apps IvI nc [vil...)

Integers (1)

[(if (int? v) ¢ cp)l=
(letp ((t1 (& vl 1)))
(if (= t1 1) & o)
[(letpy ((n (+ vi v2))) e)l=
(let* ((£1 (+ [val Dv2D))
(n (- t1 1)))

& is bit-wise and

feD)
... other arithmetic primitives are similar.
[Gif (<viv2) cepl=
(if (< Il TveD) ¢ <)
... other integer comparison primitives are similar.

Integers (2)

[(let, ((n (block-alloc-k vi))) e)l=
(letx ((t1 (shift-right [wvi] 1))
(n (block-alloc-k t1)))
fel)
[(letp ((n (block-tag vi))) e)l=
(letx ((t1 (block-tag [vil))
(2 (shift-left t1 1))
(n (+ t2 1)))
[el)

... other block primitives are similar.

Integers (3)

[(letp ((n (byte-read))) e)l=
(letx ((t1 (byte-read))
(t2 (shift-left t1 1))
(n (+ t2 1)))
fel)
[(letp ((n (byte-write v))) e)l=
left as an exercise

Characters

[(let, ((n (char->int vqi))) e)l=
(letp, ((n (shift-right [wil 2)))
fel)
[(let, ((n (int->char vqi))) e)l=
(letx ((t1 (shift-left [vi] 2))
(n (+ t1 2)))
fel)
[(if (char? v) ¢ c)l=
left as an exercise

Booleans, unit, etc.

[(if (bool? v) ¢ cp)l=
(letp, ((r (& [vl 11115)))
(if (= r 10102) ¢ cf))
[(if (unit? v) ¢ cp)l=
left as an exercise
[(haltv)]=

left as an exercise

Exercise

How does the values representation phase translate the following CPS/L;

version of the successor function?
(lets ((succ (fun (c x)
(letp ((t1 (+ x 1)))

(appe ¢ t1)))))
succ)

