Register allocation

Register allocation consists in:

- rewriting a program that makes use of an unbounded number of virtual or
° ° pseudo-registers,
Reg Iste r a I Iocatl o n - into one that only uses physical (machine) registers.

Some virtual registers might have to be spilled to memory.
Register allocation is done:
Advanced Compiler Construction - very late in the compilation process — typically only instruction scheduling
Michel Schinz — 2021-04-15 comes later,

- on an IR very close to machine code.

Setting the scene Running example

Euclid's algorithm to compute greatest common divisor.

InLs In RTL
(defrec gcd gcd: Rs « done
We will do register allocation on an RTL with: (fun (a b) if R, = 0 goto Rs
- n machine registers Ry, ..., Ra-1 (some with non-numerical indexes like the & ;: 0 gj : Ei % R,
link register Rik), (ged b (% a b))))) Ri ¢ Rs
- unbounded number of virtual registers vo, v1, ... zf):o ngd
Of course, virtual registers are only available before register allocation. done: goto Ruk

Calling conventions:
- the arguments are passed in Ry, Ry, ...
- the return address is passed in Ry,
- the return value is passed in R1.

Register allocation example

Before register allocation After register allocation

allocable
ged: Ve ¢ Rix registers: ged:
vi ¢ R: loop: Rs ¢« done
V2 ¢ R2 Rl, R2, R3, if R, = 0 goto Rs
loop: vz ¢« done Rik Rs ¢ Ry
if v = 0 goto v3 R ¢« R1 % R
Vg4 €« V2 R1 ¢ R3
V2 € V1 % Va2 Rs « loop
Vi ¢ Vg goto Rs
vs ¢ loop done: goto Rik
goto vs
done: th: \:,1@ Allocation:
Vo > Rk
R1, R2: parameters vi > Ri
Rik: return address V2 > R

V3, V4, Vs > R3

Techniques

We will study two commonly used techniques:
1. register allocation by graph coloring, which:
- produces good results,
- is relatively slow,
- is therefore used mostly in batch compilers,
2. linear scan register allocation, which:
- produces average results,
- is very fast,
- is therefore used mostly in JIT compilers.
Both are global: they allocate registers for a whole function at a time.

Technique #1:
graph coloring

Allocation by graph coloring

Register allocation can be reduced to graph coloring:
1. build the interference graph, which has:
- one node per register — real or virtual,
- one edge between each pair of nodes whose registers are live at the
same time.

2. color the interference graph with at most K colors (K = number of
available registers), so that all nodes have a different color than all their
neighbors.

Problems:
- coloring is NP-complete for arbitrary graphs,
- a K-coloring might not even exist.

Program

ged:
Vo ¢ Rik
vi ¢ R1
Va2 ¢ Ry
Tloop:
v3 ¢ done
if v2=0 goto vs
Vs € V2
V2 € V1 % V2
Vi € Va
vs <« loop
goto vs

R1 « vi
goto ve

Liveness
{in{out}

{R1,R2,RikiR1,R2,ve}
{R1,R2,Vo}{R2,Ve,V1}
{R2,ve,V1}{Vo-V2}

{Vo—Vz}{Vo—V3}
{vo-vs{{voe-va}
{vo-va}{vo-va,va}
{Ve-v2,vafve-va,va}
{ve-va,vafvo-va}
{vo-va}{vo-va,vs}
{Ve-v2,vsve-va}

{ve,vi{R1,vo}
{R1,ve{R1}

Interference graph

Original prog. Colored interference graph

ged:
Vo ¢ Rk
Vi ¢ Ry
V2 ¢ R
loop:
vz « done
if v2=0 goto vs
Va4 € V2
Vo € V1 % V2
Vi ¢ Vg4
vs « loop
goto vs

Ri ¢ va
goto ve

Rewritten

ged: prog.
Rik ¢ Ruk
Ry ¢ R:
R2 ¢ R2

Rs ¢« done
if R2=0 goto Rs
R: ¢« Rz
Ry ¢« R1 % Ry
Ry ¢ Rs3
Rz ¢« loop
goto Rs
done:
R1 « Ra
goto Rk

Original prog.

ged:
Vo ¢ Rk
vi ¢ R
V2 ¢ R
loop:
v3 ¢ done
if v2=0 goto vs
Vg € V2
V2 € V1 % Va2
Vi € Vg
vs <« loop

Colored interference graph

Rewritten

ged: prog.

Rs ¢ Rk
Rik ¢ R1
R1 ¢« Ra

loop:

R2 « done

if R1=0 goto Ra
R2 ¢« R:1

R1 ¢ Rk % R:1
Rk ¢ R2

R2 ¢« loop

goto R:

done:

R1 ¢ Rik
goto Rs

This second coloring is also correct, but produces worse code!

Coloring by simplification is a heuristic technique to color a graph with K

colors:

1. find a node n with less than K neighbors,

2. remove it from the graph,

3. recursively color the simplified graph,

4. color n with any color not used by its neighbors.
What if there is no node with less than K neighbors?

- a K-coloring might not exist,

- but simplification is attempted nevertheless.

Coloring by simplification
Number of available colors (K): 3
@—©0
N

©
@—0

Stack of removed nodes: 5 2 1 3

Spilling

(Optimistic) spilling

What if all nodes have K or more neighbors during simplification?
A node n must be chosen to be spilled and its value stored in memory instead
of in a register:
- remove its node from the graph (assuming no interference between spilled
value and other values),
- recursively color the simplified graph as usual.
Once recursive coloring is done, two cases:
1. by chance, the neighbors of n do not use all the possible colors, n is not
spilled,
2. otherwise, n is really spilled.

Spill costs

Which node should be spilled? Ideally one:
- whose value is not frequently used, and/or
- that interferes with many other nodes.
For that, compute the spill cost of a node n as:
cost(n) = (rwo(n) + 10 rwi(n) + ... + 10k rw(n)) / degree(n)
where:
- rwi(n) is the number of times the value of n is read or written in a loop of
depth i,
- degree(n) is the number of edges adjacent to n in the interference graph.
Then spill the node with lowest cost.

Spilling of pre-colored nodes

The interference graph contains nodes corresponding to the physical registers
of the machine:
- they are said to be pre-colored, as their color is given by the machine
register they represent,
- they should never be simplified, as they cannot be spilled (they are physical
registers!).

Spilling example: costs

ged:
vo < R node rwo rws; deg. cost
V2 ¢ Ro Vo 2 0 7 0,29
Tloop:
v3 ¢« done Vi 2 2 6 3,67
if v2=0 goto vs
T & V2 1 4 6 6,83
e e E vi 0 2 3 6,67
Vi € Va
vs ¢« loop Va4 0 2 3 6,67
goto vs
done: Vs 0 2 3 6,67
Ry ¢ vi
goto Ve cost = (rwo + 10 rwy) / degree

Spilling example

Consequences of spilling

After spilling, rewrite the program to:

- insert code just before the spilled value is read, to fetch it from memory,

- insert code just after the spilled value is written, to write it back to memory.
But: spilling code introduces new virtual registers, so register allocation must
be redonel
In practice, 1-2 iterations are enough in almost all cases.

Spilling code integration

Original program

ged:
Vo ¢ Rik
Vi ¢ Ry
Va2 €« Rz
Tloop:
vz <« done
if v2 = 0 goto vs
Va4 € V2
V2 ¢ V1 % V2
Vi € Va
vs ¢ loop
goto vs
done:
Ry ¢ v1
goto vo

spilling
O'F Vo

=)

Rewritten program

ged:
Ve ¢ Rik
push ve
Vi ¢ Ry
Vz(—Rz
Tloop:
vz <« done
if v2 = 0 goto vs
Va4 € V2
V2 ¢ V1 % V2
Vi € Va
vs ¢ loop
goto vs
done:
Ry ¢ v1
pop V7
goto vz

New interference graph

Interference graph w/ spilling Final program

ged:
Rk « Rk

push Rik
"Ri ¢ Ry
"Rz ¢ Ry
Tloop:

Rk ¢ done

if Rz = 0 goto Rik

Rk ¢ Rz

Rz ¢« R1 % R2

R1 ¢ Rik

Rk « loop

goto Rik
done:
Ry ¢« Ry

pop Ra

goto Rz

Coalescing

Coloring quality

Two valid K-colorings of an interference graph are not necessarily equivalent:
one can lead to a much shorter program than the other.
Why? Because "move" instruction of the form

Vi ¢ V2
can be removed if vi and vz end up being allocated to the same register (also
holds when vi or vz is a real register).
Goal: make this happen as often as possible.

Coalescing

If vi and v2 do not interfere, a move instruction of the form

Vi ¢ V2
can always be removed by replacing vi and vz by a new virtual register vig,.
This is called coalescing, as the nodes of vi and v; in the interference graph
coalesce into a single node.

Coalescing issue

Coalescing is not always a good idea!
Might turn a graph that is K-colorable into one that isn't, which implies spilling.
Therefore: use conservative heuristics.

Coalescing heuristics

Briggs: coalesce nodes nq and nz to nigy iff:
n1g2 has less than K neighbors of significant degree (i.e. of a degree greater
or equal to K),
George: coalesce nodes nq and ny to nig2 iff all neighbors of ny either:
- already interfere with ny, or
- are of insignificant degree.
Both heuristics are:
- safe: won't make a K-colorable graph uncolorable,
- conservative: might prevent a safe coalescing.

Heuristic #1: Briggs

Briggs: coalesce nodes ny and nz to nigy iff:
n1g2 has less than K neighbors of significant degree (i.e. of a degree = K),
Rationale:
- during simplification, all the neighbors of nig; that are of insignificant
degree will be simplified;
- once they are, n1g, will have less than K neighbors and will therefore be
simplifiable too.

Heuristic #2: George

George: coalesce nodes nq and n; to nig; iff all neighbors of ny either:
- already interfere with ny, or

- are of insignificant degree.
Rationale:
- the neighbors of nyg, will be:
1. those of ny, and
2. the neighbors of nq of insignificant degree,
- the latter ones will all be simplified,

- once they are, the graph will be a sub-graph of the original one.

Coalescing example

non-

node
of significant

interfering,
move-related

coalescing of
R: and v; into

safe
according to
Briggs and
George with node of
K=4 insignificant

degree

Coalescing example (2)

coalescing of
Rz and vz into
RZV

safe
according to
Briggs and
George with
K=4

Coalescing example (3)

coalescing of
RLK and Vo
into Rikv

safe
according to
Briggs and
George with
K=4

Putting it all
together

lterated register coalescing

Simplification and coalescing should be interleaved to get iterated register
coalescing:
1. Interference graph nodes are partitioned in two classes: move-related or
not.
2. Simplification is done on not move-related nodes (as move-related ones
could be coalesced).
3. Conservative coalescing is performed.
4. When neither simplification nor coalescing can proceed further, some
move-related nodes are frozen (marked as non-move-related).
5. The process is restarted at 2.

lterated register coalescing

build
i

simplify 3
v

coalesce
v in case of

frefze actual spill

potentlal spill
< select D

actual spill

Assignment
constraints

Assignment constraints Register classes

Current assumption: a virtual register can be assigned to any free physical

Most architectures have several register classes:
register.

- integer vs floating-point,
- address vs data,
- etc.

Not always true because of assignment constraints due to:
- registers classes (e.g. integer vs. floating-point registers),
- instructions with arguments or result in specific registers,
- calling conventions.
A realistic register allocator has to be able to satisfy these constraints.

To take them into account in a coloring-based allocator:
introduce artificial interferences between a node and all pre-colored nodes
corresponding to registers to which it cannot be allocated.

Calling conventions Caller/callee-saved registers
How to deal with the fact that calling conventions pass arguments in specific Calling conventions distinguish two kinds of registers:
registers? - caller-saved: saved by the caller before a call and restored after it,
At function entry, copy arguments to new virtual regs: - callee-saved: saved by the callee at function entry and restored before
fact: function exit.
vi ¢ R ; copy first argument to v Ideally:
Before a call, load arguments in appropriate registers: - virtual registers having to survive at least one call should be assigned to
Ri ¢ V2 ; load first argument from v» callee-saved registers,
CALL fact

- other virtual registers should be assigned to caller-saved registers.

Whenever possible, these instructions will be removed by coalescing. How can this be obtained in a coloring-based allocator?

Caller/callee-saved registers

Caller-saved registers do not survive a function call.

To model this:
Add interference edges between all virtual registers live across at least one
call and (physical) caller-saved registers.

Consequence:
Virtual registers live across at least one call won't be assigned to caller-saved
registers.

Therefore:
They will either be allocated to callee-saved registers, or spilled!

Saving callee-saved registers

Callee-saved registers must be preserved by all functions, so:
- copy them to fresh temporary registers at function entry,
- restore them before exit.

Saving callee-saved registers

For example, if Rg is callee-saved:

entry:
vi ¢ Rg ; save callee-saved Rg in vi
" ; function body
Rs ¢« vi ; restore callee-saved Rg
goto Rik

If register pressure is low:
- Rg and v1 will be coalesced, and
- the two move instructions will be removed.
If register pressure is high:
- v1 will be spilled, making Rs available in the function (e.g. to store a virtual
register live across a call).

Technique #2:
linear scan

Linear scan

The basic linear scan technique is very simple:

- the program is linearized — i.e. represented as a linear sequence of
instructions, not as a graph,

- a unique live range is computed for every variable, going from the first to
the last instruction during which it is live,

- registers are allocated by iterating over the intervals sorted by increasing
starting point: each time an interval starts, the next free register is allocated
to it, and each time an interval ends, its register is freed,

- if no register is available, the active range ending last is chosen to have its
variable spilled.

Linear scan example

Linearized version of GCD computation:

Program

ged: ve ¢ Rik
Vi ¢ Ri
vy ¢ R2
loop: vs ¢« done
v2=0 goto vs3
Va4 € V2
V2 € V1 % Va2
Vi € Vg
vs « loop
goto vs
done: R1 ¢ vi
goto vo

W o~ U WN -
=
—+

[
N R o

Live ranges

Ve: [1+,127]

vi: [2+,117]

va: [3+,10%]

V3. [4+,5]

va: [6%,87]

vs: [9+,10-]

Notation:

i* entry of instr. i
i~ exit of instr. i

Linear scan example (4 r.)

time active intervals allocation
1+ [1+,127] Vo>R3
2+ [2+,11°][1+,127] Ve>R3, Vi>R1
3+ [3+,10+],[2+,11-],[1+,127] Vo>R3,V1>R1, V3R>

4+ [4+,5-][3+,10+],[2+,11-],[1+,12°] Ve>R3,V1>R1,Vv2>R2, Vv3>Rik
6+ [6%,81,[3+,10+],[2+,11-][1+,127] Vo>R3, V1>R1,V2>R2, Va>RLk
9+ [9+,10-1,[3+,10*][2+,11-],[1+,127] Vo>R3,V1>R1,V29R2, Vs>Rik

Result: no spilling

Linear scan example (3 r.)

time active intervals allocation
1+ [1+,12] Vo>Rik
2+ [2+,11-][1+,127] Ve>Rik, VioR1

3+ [3+,10+4][2+11°],[1+,12]

Vo>Rik, V1>R1,V23R2

4+ [4+5][3+,107][2+,11]

VoS, Vi>R1,Vv2>Rz2,Vv3>Rik

6+ [6+,81[37,107][27,11]

Vo>S 5 vi>R1 N V2>R2) Va>Rik

9+[9+,10-],[3+,10+][2+,11]

Vo>S,V13R1,V2>Ra, Vs3R1k

Result: v is spilled during its whole life time!

The basic linear scan algorithm is very simple but still produces reasonably
good code. It can be — and has been — improved in many ways:
- the liveness information about virtual registers can be described using a
sequence of disjoint intervals instead of a single one,
- virtual registers can be spilled for only a part of their whole life time,
- more sophisticated heuristics can be used to select the virtual register to
spill,
- etc.

