Register allocation

Advanced Compiler Construction Michel Schinz – 2021-04-15

Register allocation

Register allocation consists in:

- rewriting a program that makes use of an unbounded number of virtual or pseudo-registers,
- into one that only uses physical (machine) registers.
- Some virtual registers might have to be **spilled** to memory. Register allocation is done:
- very late in the compilation process typically only instruction scheduling comes later,
- on an IR very close to machine code.

Setting the scene

We will do register allocation on an RTL with:

- n machine registers $R_0,\,...,\,R_{n-1}$ (some with non-numerical indexes like the link register $R_{LK}),$
- unbounded number of virtual registers $v_0,\,v_1,\,\ldots$

Of course, virtual registers are only available before register allocation.

Running example

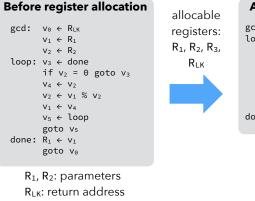
Euclid's algorithm to compute greatest common divisor.

In L ₃	In RTL
(defrec gcd (fun (a b) (if (= 0 b) a (gcd b (% a b)))))	gcd: $R_3 \leftarrow done$ if $R_2 = 0$ goto R_3 $R_3 \leftarrow R_2$ $R_2 \leftarrow R_1 \% R_2$ $R_1 \leftarrow R_3$ $R_3 \leftarrow gcd$
	goto R ₃ done: goto Rικ

Calling conventions:

- the arguments are passed in $R_1,\,R_2,\,\ldots$
- the return address is passed in $R_{\mbox{\tiny LK}}$
- the return value is passed in R_1 .

Register allocation example



After register allocation gcd: loop: $R_3 \in done$ if $R_2 = 0$ goto R_3 $R_3 \in R_2$ $R_2 \in R_1 \% R_2$ $R_1 \in R_3$ $R_3 \in loop$ goto R_3 done: goto R_{LK} $V_0 \Rightarrow R_{LK}$ $v_1 \Rightarrow R_1$

 $v_1 \rightarrow R_1$ $v_2 \rightarrow R_2$ $v_3, v_4, v_5 \rightarrow R_3$

Techniques

We will study two commonly used techniques:

- 1. register allocation by graph coloring, which:
- produces good results,
- is relatively slow,
- is therefore used mostly in batch compilers,
- 2. linear scan register allocation, which:
- produces average results,
- is very fast,
- is therefore used mostly in JIT compilers.

Both are **global**: they allocate registers for a whole function at a time.

Technique #1: graph coloring

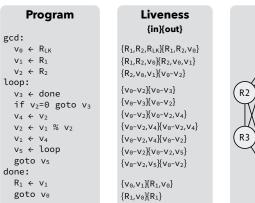
Allocation by graph coloring

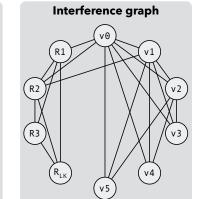
Register allocation can be reduced to graph coloring:

- 1. build the interference graph, which has:
- one node per register real or virtual,
- one edge between each pair of nodes whose registers are live at the same time.
- color the interference graph with at most K colors (K = number of available registers), so that all nodes have a different color than all their neighbors.

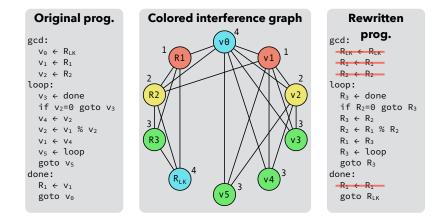
Problems:

- coloring is NP-complete for arbitrary graphs,
- a K-coloring might not even exist.



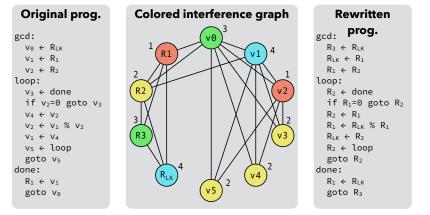


Coloring example



Coloring example (2)

Interference graph example



This second coloring is also correct, but produces worse code!

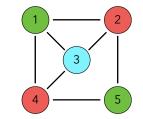
Coloring by simplification

Coloring by simplification is a heuristic technique to color a graph with K colors:

- 1. find a node n with less than K neighbors,
- 2. remove it from the graph,
- 3. recursively color the simplified graph,
- 4. color n with any color not used by its neighbors.
- What if there is no node with less than K neighbors?
- a K-coloring might not exist,
- but simplification is attempted nevertheless.

Coloring by simplification

Number of available colors (K): 3



(Optimistic) spilling

What if all nodes have K or more neighbors during simplification? A node n must be chosen to be **spilled** and its value stored in memory instead of in a register:

- remove its node from the graph (assuming no interference between spilled value and other values),
- recursively color the simplified graph as usual.

Once recursive coloring is done, two cases:

- 1. by chance, the neighbors of n do not use all the possible colors, n is not spilled,
- 2. otherwise, n is really spilled.

Spilling

Spill costs

Which node should be spilled? Ideally one:

- whose value is not frequently used, and/or
- that interferes with many other nodes.

For that, compute the spill cost of a node n as:

 $cost(n) = (rw_0(n) + 10 rw_1(n) + ... + 10^k rw_k(n)) / degree(n)$ where:

- $\mathsf{rw}_i(n)$ is the number of times the value of n is read or written in a loop of depth i,

- degree(n) is the number of edges adjacent to n in the interference graph. Then spill the node with lowest cost.

Spilling of pre-colored nodes

The interference graph contains nodes corresponding to the physical registers of the machine:

- they are said to be **pre-colored**, as their color is given by the machine register they represent,
- they should never be simplified, as they cannot be spilled (they are physical registers!).

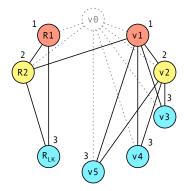
Spilling example: costs

gcd:
$v_{0} \leftarrow R_{LK}$
$v_1 \leftarrow R_1$
$V_2 \leftarrow R_2$
loop:
$v_3 \leftarrow done$
if v ₂ =0 goto v
$V_4 \leftarrow V_2$
$V_2 \leftarrow V_1 \% V_2$
$V_1 \leftarrow V_4$
v₅ ← loop
goto v₅
done:
$R_1 \leftarrow v_1$
goto v₀

node	rw ₀	rw ₁	deg.	cost
Vo	2	0	7	0,29
V1	2	2	6	3,67
V ₂	1	4	6	6,83
V ₃	0	2	3	6,67
V4	0	2	3	6,67
V5	0	2	3	6,67

$cost = (rw_0 + 10 rw_1) / degree$

Spilling example



Consequences of spilling

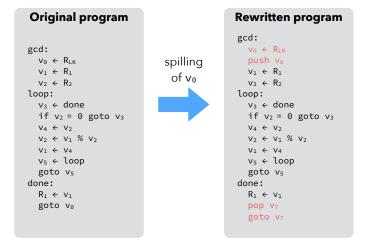
After spilling, rewrite the program to:

- insert code just before the spilled value is read, to fetch it from memory,

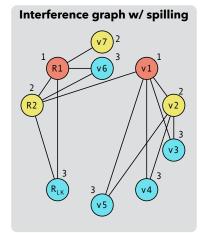
- insert code just after the spilled value is written, to write it back to memory. But: spilling code introduces new virtual registers, so register allocation must be redone!

In practice, 1-2 iterations are enough in almost all cases.

Spilling code integration



New interference graph



Final program	m
gcd:	
RLK + RLK	
push R _{LK}	
$R_1 \leftarrow R_1$	
$R_2 \leftarrow R_2$	
loop:	
$R_{LK} \leftarrow done$	
if $R_2 = 0$ goto	RLK
$R_{LK} \leftarrow R_2$	
$R_2 \leftarrow R_1 \% R_2$	
$R_1 \leftarrow R_{LK}$	
R _{LK} ← loop	
goto R _{LK}	
done:	
$R_1 \leftarrow R_1$	
pop R ₂	
goto R ₂	
0	

Coloring quality

Two valid K-colorings of an interference graph are not necessarily equivalent: one can lead to a much shorter program than the other. Why? Because "move" instruction of the form

 $V_1 \leftarrow V_2$

can be removed if v_1 and v_2 end up being allocated to the same register (also holds when v_1 or v_2 is a real register).

Goal: make this happen as often as possible.

Coalescing

Coalescing

Coalescing issue

If v_1 and v_2 do not interfere, a move instruction of the form

$v_1 \ \leftarrow \ v_2$

can always be removed by replacing v_1 and v_2 by a new virtual register $v_{1\&2}$. This is called **coalescing**, as the nodes of v_1 and v_2 in the interference graph coalesce into a single node.

Coalescing heuristics

Briggs: coalesce nodes n_1 and n_2 to $n_{1\&2}$ iff:

 $n_{1\&2}$ has less than K neighbors of significant degree (i.e. of a degree greater or equal to K),

George: coalesce nodes n_1 and n_2 to $n_{1\&2}$ iff all neighbors of n_1 either:

- already interfere with n₂, or
- are of insignificant degree.

Both heuristics are:

- safe: won't make a K-colorable graph uncolorable,
- conservative: might prevent a safe coalescing.

Coalescing is not always a good idea! Might turn a graph that is K-colorable into one that isn't, which implies spilling. Therefore: use conservative heuristics.

Heuristic #1: Briggs

Briggs: coalesce nodes n_1 and n_2 to $n_{1\&2}$ iff:

 $n_{1\&2}$ has less than K neighbors of significant degree (i.e. of a degree \ge K), Rationale:

- during simplification, all the neighbors of $n_{1\&2}$ that are of insignificant degree will be simplified;
- once they are, $n_{1\&2}$ will have less than K neighbors and will therefore be simplifiable too.

Heuristic #2: George

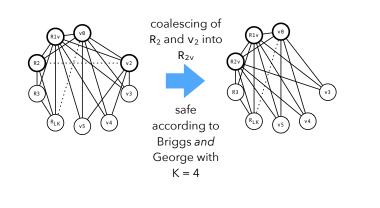
George: coalesce nodes n_1 and n_2 to $n_{1\&2}$ iff all neighbors of n_1 either:

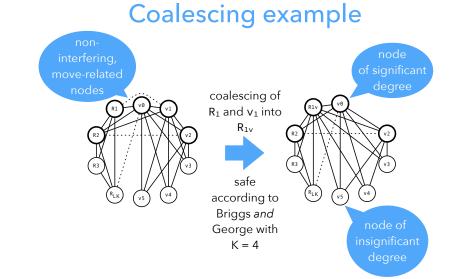
- already interfere with n₂, or
- are of insignificant degree.

Rationale:

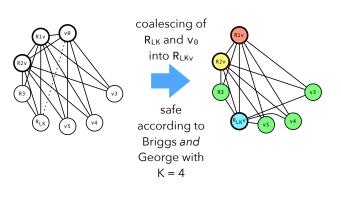
- the neighbors of $n_{1\&2}$ will be:
- 1. those of n₂, and
- 2. the neighbors of n_1 of insignificant degree,
- the latter ones will all be simplified,
- once they are, the graph will be a sub-graph of the original one.

Coalescing example (2)





Coalescing example (3)



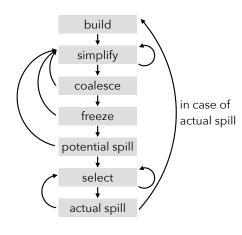
Putting it all together

Iterated register coalescing

Simplification and coalescing should be interleaved to get **iterated register coalescing**:

- 1. Interference graph nodes are partitioned in two classes: move-related or not.
- 2. Simplification is done on *not* move-related nodes (as move-related ones could be coalesced).
- 3. Conservative coalescing is performed.
- 4. When neither simplification nor coalescing can proceed further, some move-related nodes are **frozen** (marked as non-move-related).
- 5. The process is restarted at 2.

Iterated register coalescing



Assignment constraints

Assignment constraints

Current assumption: a virtual register can be assigned to any free physical register.

Not always true because of **assignment constraints** due to:

- registers classes (e.g. integer vs. floating-point registers),
- instructions with arguments or result in specific registers,
- calling conventions.

A realistic register allocator has to be able to satisfy these constraints.

Register classes

Most architectures have several register classes:

- integer vs floating-point,
- address vs data,
- etc.

To take them into account in a coloring-based allocator:

introduce artificial interferences between a node and all pre-colored nodes corresponding to registers to which it *cannot* be allocated.

Calling conventions

How to deal with the fact that calling conventions pass arguments in specific registers?

At function entry, copy arguments to new virtual regs:

fact:

 $v_1 \in R_1$; copy first argument to v_1 Before a call, load arguments in appropriate registers:

 $R_1 \leftarrow v_2$; load first argument from v_2 CALL fact

Whenever possible, these instructions will be removed by coalescing.

Caller/callee-saved registers

Calling conventions distinguish two kinds of registers:

- caller-saved: saved by the caller before a call and restored after it,
- **callee-saved**: saved by the callee at function entry and restored before function exit.

Ideally:

- virtual registers having to survive at least one call should be assigned to callee-saved registers,

- other virtual registers should be assigned to caller-saved registers. How can this be obtained in a coloring-based allocator?

Caller/callee-saved registers

Caller-saved registers do not survive a function call.

To model this:

Add interference edges between all virtual registers live across at least one call and (physical) caller-saved registers.

Consequence:

Virtual registers live across at least one call won't be assigned to caller-saved registers.

Therefore:

They will either be allocated to callee-saved registers, or spilled!

Saving callee-saved registers

Callee-saved registers must be preserved by all functions, so:

- copy them to fresh temporary registers at function entry,
- restore them before exit.

Saving callee-saved registers

For example, if R_8 is callee-saved:

entry:

goto R_{LK}

If register pressure is low:

- R_8 and v_1 will be coalesced, and

- the two move instructions will be removed.

If register pressure is high:

- v_1 will be spilled, making R_8 available in the function (e.g. to store a virtual register live across a call).

Technique #2: linear scan

Linear scan

The basic linear scan technique is very simple:

- the program is linearized i.e. represented as a linear sequence of instructions, not as a graph,
- a unique live range is computed for every variable, going from the first to the last instruction during which it is live,
- registers are allocated by iterating over the intervals sorted by increasing starting point: each time an interval starts, the next free register is allocated to it, and each time an interval ends, its register is freed,
- if no register is available, the active range ending last is chosen to have its variable spilled.

Linear scan example

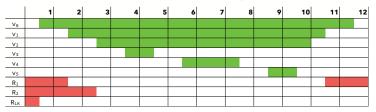
Linearized version of GCD computation:

Pro	ogram	Live ranges
3 V2 4 loop: V3 5 if 6 V4 7 V2 8 V1 9 V5 10 go 11 done: R1	$\begin{array}{l} \leftarrow \ R_{1} \\ \leftarrow \ R_{2} \\ \leftarrow \ done \\ v_{2}=0 \ goto \ v_{3} \\ \leftarrow \ v_{2} \\ \leftarrow \ v_{1} \ \% \ v_{2} \\ \leftarrow \ v_{4} \\ \leftarrow \ loop \\ to \ v_{5} \end{array}$	v ₀ : [1+,12·] v ₁ : [2+,11·] v ₂ : [3+,10+] v ₃ : [4+,5·] v ₄ : [6+,8·] v ₅ : [9+,10·] Notation: <i>i</i> + entry of instr. i <i>i</i> exit of instr. i

Linear scan example (4 r.)

	1	2	3	4	5	6	7	8	9	10	11		12
Vθ													
V1													
V2													
V3													
V4 V5													
R1													
R ₂													
R ₃													
R _{LK}													
	time	e active	interv	als			alloca	ation					
	1+	+ [1+,12	-]				v₀→R₃						
	2+ [2+,11-],[1+,12-]						$v_0 \rightarrow R_3, v_1 \rightarrow R_1$						
	3+ [3+,10+],[2+,11-],[1+,12-]					$v_0 \rightarrow R_3, v_1 \rightarrow R_1, v_2 \rightarrow R_2$							
	4+ [4+,5-],[3+,10+],[2+,11-],[1+,12-]					$v_0 \rightarrow R_3, v_1 \rightarrow R_1, v_2 \rightarrow R_2, v_3 \rightarrow R_{LK}$							
	6+ [6+,8-],[3+,10+],[2+,11-],[1+,12-]				$v_0 \rightarrow R_3, v_1 \rightarrow R_1, v_2 \rightarrow R_2, v_4 \rightarrow R_{LK}$								
	9+ [9+,10-],[3+,10+],[2+,11-],[1+,12-]				$v_0 \rightarrow R_3$, $v_1 \rightarrow R_1$, $v_2 \rightarrow R_2$, $v_5 \rightarrow R_{LK}$								
					Resu	lt: no	spillir	ng					

Linear scan example (3 r.)



time active intervals	allocation
1+ [1+,12-]	v₀→RLK
2+ [2+,11-],[1+,12-]	v₀→RLK, v1→R1
3+ [3+,10+],[2+,11-],[1+,12-]	$v_0 \rightarrow R_{LK}, v_1 \rightarrow R_1, v_2 \rightarrow R_2$
4+ [4+,5·],[3+,10+],[2+,11·]	$v_0 \rightarrow S, v_1 \rightarrow R_1, v_2 \rightarrow R_2, v_3 \rightarrow R_{LK}$
6+ [6+,8·],[3+,10+],[2+,11·]	$v_0 \rightarrow S, v_1 \rightarrow R_1, v_2 \rightarrow R_2, v_4 \rightarrow R_{LK}$
9+ [9+,10-],[3+,10+],[2+,11-]	$v_0 \rightarrow S, v_1 \rightarrow R_1, v_2 \rightarrow R_2, v_5 \rightarrow R_{LK}$

Result: v₀ is spilled *during its whole life time*!

Linear scan improvements

The basic linear scan algorithm is very simple but still produces reasonably good code. It can be – and has been – improved in many ways:

- the liveness information about virtual registers can be described using a sequence of disjoint intervals instead of a single one,
- virtual registers can be spilled for only a part of their whole life time,
- more sophisticated heuristics can be used to select the virtual register to spill,
- etc.