
Instruction 
scheduling

Advanced Compiler Construction 
Michel Schinz — 2021–04–22

1

Instruction ordering

When emitting the instructions of a program, a compiler imposes a total order 
on them, but: 

– there is (usually) more than one valid order, 
– some orders might be better than others. 

Example: 
Two independent instructions appearing in sequence can be swapped.

2

Instruction scheduling

Goal of instruction scheduling: 
Find, among all valid permutations of the instructions of a program, one that 
is better than the others. 

(Usually, better = executes faster.)

3

Pipeline stalls

Modern, pipelined architectures can usually issue at least one instruction per 
clock cycle. 
However, an instruction can execute only if its arguments are ready, otherwise 
the pipeline stalls until it is the case. 
Causes for stalls: 

– the instruction producing the argument has not finished executing yet, 
– the argument must be fetched from memory, 
– etc.

4



Scheduling example
The following example will illustrate how proper scheduling can reduce the 
time required to execute a piece of RTL code. 
We assume the following delays for instructions:

Instruction kind RTL notation Delay

Memory load or store Ra ← Mem[Rb+c] 
Mem[Rb+c] ← Ra

3

Multiplication Ra ← Rb * Rc 2

Addition Ra ← Rb + Rc 1

5

Scheduling example

Cycle Instruction
1 R1 ← Mem[RSP]

4 R1 ← R1 + R1
5 R2 ← Mem[RSP+1]

8 R1 ← R1 * R2
9 R2 ← Mem[RSP+2]

12 R1 ← R1 * R2
13 R2 ← Mem[RSP+3]

16 R1 ← R1 * R2
18 Mem[RSP+4] ← R1

Cycle Instruction
1 R1 ← Mem[RSP]

2 R2 ← Mem[RSP+1]

3 R3 ← Mem[RSP+2]

4 R1 ← R1 + R1
5 R1 ← R1 * R2
6 R2 ← Mem[RSP+3]

7 R1 ← R1 * R3
9 R1 ← R1 * R2

11 Mem[RSP+4] ← R1

6

Instruction dependences

An instruction i2 depends on an instruction i1 when it is not possible to 
execute i2 before i1 without changing the behavior of the program. 
We distinguish three kinds of dependencies: 

1. true dependency — i2 reads a value written by i1 (read after write or 
RAW), 

2. anti-dependency — i2 writes a value read by i1 (write after read or WAR), 
3. anti-dependency — i2 writes a value written by i1 (write after write or 

WAW).

7

Anti-dependencies

Anti-dependencies do not arise from the flow of data. 
They are due to a single location being reused. 
Often, they can be removed by "renaming" locations, e.g. using different 
registers. 
In the example below, the program (left) contains a WAW anti-dependency 
that can be removed by "renaming" the second use of R1.

R1 ← Mem[RSP]
R4 ← R4 + R1
R1 ← Mem[RSP+1]
R4 ← R4 + R1

R1 ← Mem[RSP]
R4 ← R4 + R1
R2 ← Mem[RSP+1]
R4 ← R4 + R2

8



Computing dependencies

Identifying dependencies is: 
– easy if they only access registers, 
– impossible (in general) if they access memory. 

For memory, conservative approximations have to be used. We won't cover 
them here.

9

Dependence graph

The dependence graph is a directed graph representing dependencies 
among instructions: 

– the nodes are the instructions to schedule, 
– there is an edge from n1 to n2 iff n2 depends on n1. 

Any topological sort of the nodes of this graph is a valid schedule of the 
instructions.

10

Dependence graph example
Name Instruction
a R1 ← Mem[RSP]
b R1 ← R1 + R1
c R2 ← Mem[RSP+1]
d R1 ← R1 * R2
e R2 ← Mem[RSP+2]
f R1 ← R1 * R2
g R2 ← Mem[RSP+3]
h R1 ← R1 * R2
i Mem[RSP+4] ← R1

b

d

gf

h

c

e

i
true dependence
antidependence

a

11

List scheduling

Optimal instruction scheduling is NP-complete. 
List scheduling is: 

– a heuristic scheduling technique, 
– that works on a single basic block. 

Basic idea: 
– simulate the execution of the instructions, and 
– schedule them only when their operands are ready.

12



List scheduling algorithm

The list scheduling algorithm maintains two lists: 
– ready: the instructions that could be scheduled without stall, ordered by 

priority, 
– active: the instructions that are being executed. 

At each step: 
– the highest-priority instruction from ready is scheduled, 
– it gets moved to active, 
– it stays there for a time equal to its delay. 

Before scheduling is performed, renaming is done to remove all anti-
dependencies that can be removed.

13

Instruction priority

Nodes (i.e. instructions) are sorted by priority in the ready list. The priority of a 
node can be defined as: 

– the length of the longest latency-weighted path from it to a root of the 
dependence graph, 

– the number of its immediate successors, 
– the number of its descendants, 
– its latency, 
– etc. 

Unfortunately, none of these is better for all cases.

14

List scheduling example

b10

d9

g8f7

h5

c12

e10

i3

a13 Cycle ready active
1 [a13,c12,e10,g8] [a]
2 [c12,e10,g8] [a,c]
3 [e10,g8] [a,c,e]
4 [b10,g8] [b,c,e]
5 [d9,g8] [d,e]
6 [g8] [d,g]
7 [f7] [f,g]
8 [] [f,g]
9 [h5] [h]

10 [] [h]
11 [i3] [i]
12 [] [i]
13 [] [i]
14 [] []

A node's priority is the length 
of the longest latency-
weighted path from it to a root 
of the dependence graph

priority

15

Scheduling conflicts

Should scheduling be done before or after register allocation? 
– If it is done first, register allocation can introduce spilling code that destroys 

the schedule. 
– If it is done second, register allocation can introduce anti-dependencies 

when reusing registers. 
Solution: 

– schedule first, 
– allocate registers 
– schedule once more if spilling was necessary.

16


