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Tail calls 
(and their elimination)
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Functional loops

Often, functional languages do not offer loops. 
So, programmers resort to recursion. 
E.g., the central loop of an L3 Web server might be: 
(defrec web-server-loop 
  (fun () 
    (wait-for-connection) 
    (fork handle-connection) 
    (web-server-loop)))
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Recursion problem

Problem: 
– recursive calls consume stack, 
– the web server will eventually crash (stack overflow). 

But: 
– the call to web-server-loop could be a jump! 

So, the compiler should: 
– detect such calls, 
– replace them by jumps.
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Tail calls

Why can the recursive call of web-server-loop be replaced by a jump? 
Because it is the last action taken by the function: 
(defrec web-server-loop 
  (fun () 
    (wait-for-connection) 
    (fork handle-connection) 
    (web-server-loop))) 

Such a call in terminal position is a tail call (this one is also recursive, but not 
all are).
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Exercise
In the L3 functions below, which calls are tail calls? 
(defrec list-map 
  (fun (f l) 
     (if (list-empty? l) 
         l 
         (list-prepend 
           (f (list-head l)) 
           (list-map f (list-tail l)))))) 
(defrec list-fold-left 
  (fun (f z l) 
     (if (list-empty? l) 
         z 
         (list-fold-left f 
                         (f z (list-head l)) 
                         (list-tail l)))))
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Tail call elimination

When a function performs a tail call, its own activation frame is dead: it won't 
be used anymore, as there is nothing to do after the call returns. 
Therefore tail calls can be compiled as: 

1. load the arguments for the callee, 
2. free the activation frame of the caller, 
3. jump (!) to the callee. 

This is called tail call elimination (or optimization).
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TCE example

Consider the following function definition and call: 
(defrec sum 
  (fun (z l) 
    (if (list-empty? l) 
        z 
        (sum (+ z (list-head l)) 
             (list-tail l))))) 
(sum 0 (list-make 1 2 3)) 

How does the stack evolve, with and without tail call elimination?

8



Stack evolution (no TCE)
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Stack evolution (TCE)
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Tail call optimization?

Tail call elimination is more than just an optimization: one cannot write endless 
recursive loops without it. 
Therefore: 

– some language specifications (e.g. Scheme's) require that conforming 
implementations do TCE, 

– other language specification (e.g. C's) don't, so compiler authors choose 
whether to do TCE or not.
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Tail calls in L3
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Translation of L3 tail calls
Reminder: the basic translation from CL3 to CPS/L3 doesn't handle tail calls 
specially, and translates them sub-optimally. 
E.g., the CL3 term: 
(letrec ((f (fun (g) (g)))) f) 

gets translated to the CPS/L3 term: 
(letf ((f (fun (r1 g) 
            (letc ((r2 (cnt (v) 
                         (appc r1 v)))) 
              (appf g r2))))) 
  f) 

in which the tail call from f to g returns to f — since its return continuation is 
r2 — instead of directly returning to its caller.

13

Translation of L3 tail calls

The improved translation from CL3 to CPS/L3 does handle tail calls specially, 
and optimizes them correctly. 
With it, the same CL3 term as before: 
(letrec ((f (fun (g) (g)))) f) 

gets translated to the CPS/L3 term: 
(letf ((f (fun (r1 g) (appf g r1)))) 
  f) 

in which the tail call to g is optimized, in that it gets the same return 
continuation r1 as f itself.
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Translation of L3 tail calls

Non-tail calls are handled by ⟦·⟧N, as follows: 
⟦(e e1 e2 …)⟧N C = 
  ⟦e⟧N(λv ⟦e1⟧N(λv1 ⟦e2⟧N(λv2 … 
    (letc ((c (cnt (r) C[r]))) 
      (appf v c v1 v2 …))))) 

while tail calls are handled by ⟦·⟧T, as follows: 
⟦(e e1 e2 …)⟧T c = 
  ⟦e⟧N(λv ⟦e1⟧N(λv1 ⟦e2⟧N(λv2 … 
    (appf v c v1 v2 …))))
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Translation of CPS/L3 tail calls

In the L3 compiler, CPS/L3 is just an IR, not the target language. 
So, when generating target code, tail calls must be identified and translated 
appropriately. 
This is trivial: 

– a call where the callee gets the caller's return continuation is a tail call, 
– all other calls are non tail calls.
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TCE in 
uncooperative 
environments
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TCE in various environments

Doing TCE requires support from the target language, to deallocate the stack 
frame and do the jump: 

– no problem when generating machine code, 
– much harder when generating C code, or JVM bytecode. 

Several techniques exist to do TCE in these so-called "uncooperative 
environments".
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Benchmark program

The techniques will be illustrated using the simple C program below. If the C 
compiler does not do TCE, it crashes with a stack overflow. 
int even(int x){ return x == 0 ? 1 : odd(x-1); } 
int odd(int x){ return x == 0 ? 0 : even(x-1); } 
int main(int argc, char* argv[]) { 
  printf("%d\n", even(300000000)); 
}
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Single-function approach

Single function approach: 
– compile the whole program to a single target function, 
– tail calls become local jumps, 
– other calls become recursive calls to that function. 

Often difficult to apply in practice, due to limitations in the size of functions of 
the target language.
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Single function in C
typedef enum { fun_even, fun_odd } fun_id; 
int wholeprog(fun_id fun, int x) { 
  switch (fun) { 
  case fun_even: goto even; 
  case fun_odd:  goto odd; 
  } 
 
 even: 
  if (x == 0) return 1; 
  x = x - 1; 
  goto odd; 
 odd: 
  if (x == 0) return 0; 
  x = x - 1; 
  goto even; 
} 
int main(int argc, char* argv[]) { 
  printf("%d\n", wholeprog(fun_even, 300000000)); 
}
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Trampolines

Trampoline technique: 
– functions never perform tail calls directly, 
– rather, they return a special value to their caller — freeing their stack frame 

in the process, 
– the caller does the call on their behalf. 

This requires checking the return value of all function, to see whether a tail call 
must be performed. The code which performs this check is called a 
trampoline.
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Trampolines in C
typedef void* (*fun_ptr)(int); 
struct { fun_ptr fun; int arg; } resume; 
void* even(int x) { 
  if (x == 0) return (void*)1; 
  resume.fun = odd; 
  resume.arg = x - 1; 
  return &resume; 
} 
void* odd(int x) { 
  if (x == 0) return (void*)0; 
  resume.fun = even; 
  resume.arg = x - 1; 
  return &resume; 
} 
int main(int argc, char* argv[]) { 
  void* res = even(300000000); 
  while (res == &resume) 
    res = (resume.fun)(resume.arg); 
  printf("%d\n",(int)res); 
}
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Extended trampolines

Extended trampoline technique: 
– similar to trampolines, but trade some space for speed, 
– do not return to trampoline on every tail call, 
– rather, wait until a given number of successive ones happened, then return 

(non locally).
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Non-local returns in C

Extended trampolines require non-local returns. 
In C, they can be performed using setjmp and longjmp, a kind of goto that 
works across functions: 

– setjmp(b) saves its calling environment in b, and returns 0, 
– longjmp(b, v) restores the environment stored in b, and proceeds as if 

the call to setjmp had returned v instead of 0.
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Extended trampolines in C
typedef int (*fun_ptr)(int, int); 
struct { fun_ptr fun; int arg; } resume; 
jmp_buf jmp_env; 
 
int even(int tcc, int x) { 
  if (tcc > TC_LIMIT) { 
    resume.fun = even; 
    resume.arg = x; 
    longjmp(jmp_env, -1); 
  } 
  return (x == 0) ? 1 : odd(tcc + 1, x - 1); 
} 
int odd(int tcc, int x) { /* similar to even */ } 
 
int main(int argc, char* argv[]) { 
  int res = (setjmp(jmp_env) == 0) 
    ? even(0, 300000000) 
    : (resume.fun)(0, resume.arg); 
  printf("%d\n",res); 
}
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Baker's technique

Baker’s technique: 
– transform the whole program to continuation passing style (CPS), 
– consequence: all calls are tail calls, 
– so the whole stack can be shrunk periodically using a non-local return.
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Baker's technique in C
typedef void (*cont)(int); 
typedef void (*fun_ptr)(int, cont); 
int tcc = 0; 
struct { fun_ptr fun; int arg; cont k; } resume; 
jmp_buf jmp_env; 
void even_cps(int x, cont k) { 
  if (++tcc > TC_LIMIT) { 
    tcc = 0; 
    resume.fun = even_cps; 
    resume.arg = x; 
    resume.k = k; 
    longjmp(jmp_env, -1); 
  } 
  if (x == 0) (*k)(1); else odd_cps(x - 1, k); 
} 
void odd_cps(int x, cont k) { /* similar to even_cps */ } 
int main(int argc, char* argv[]) { 
  if (setjmp(jmp_env) == 0) even_cps(300000000, main_1); 
  else (resume.fun)(resume.arg, resume.k); 
} 
void main_1(int val) { printf("%d\n", val); exit(0); }
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Benchmark results
Processor: 2.3 GHz Intel Core i9 
Compiler: clang 11.0.3 
Optimization settings: -O0 and -O3
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