
Interpreters and
virtual machines

Advanced Compiler Construction
Michel Schinz — 2021–04–29

Interpreters

Interpreters

An interpreter is a program that executes another program, which could be
represented as:

– raw text (source code), or
– a tree (AST of the program), or
– a linear sequence of instructions.

Pros of interpreters:
– no need to compile to native code,
– simplify the implementation of programming languages,
– often fast enough on modern CPUs.

Text-based interpreters

Text-based interpreters directly interpret the textual source of the program.
Seldom used, except for trivial languages where every expression is evaluated
at most once (no loops/functions).
Plausible example: a calculator, evaluating arithmetic expressions while
parsing them.

Tree-based interpreters

Tree-based interpreters walk over the abstract syntax tree of the program to
interpret it.
Better than string-based interpreters since parsing and analysis is done only
once.
Plausible example: a graphing program, which repeatedly evaluates a function
supplied by the user to plot it.
(Also, all the interpreters included in the L3 compiler are tree-based.)

Virtual machines

Virtual machines

Virtual machines resemble real processors, but are implemented in software.
They take as input a sequence of instructions, and often also abstract the
system by:

– managing memory,
– managing threads,
– managing I/O,
– etc.

Used in the implementation of many important languages, e.g. SmallTalk, Lisp,
Forth, Pascal, Java, C#, etc.

Why virtual machines?

Since the compiler has to generate code for some machine, why prefer a
virtual over a real one?

– for portability: compiled VM code can be run on many actual machines,
– for simplicity: a VM is usually more high-level than a real machine, which

simplifies the task of the compiler,
– for simplicity (2): a VM is easier to monitor and profile, which eases

debugging.

Virtual machines drawbacks

Virtual machines have one drawback: performance.
Why?

– interpretation overhead (fetching/decoding, etc.).
Mitigations:

– compile the (hot parts) of the program being interpreted,
– adapt optimization on program behavior.

Kinds of virtual machines

Two broad kinds of virtual machines:
– stack-based VMs use a stack to store intermediate results, variables, etc.
– register-based VMs use a limited set of registers for that, like a real CPU.

What's best?
– for compiler writers: stack-based is easier (no register allocation),
– for performance: register-based can be better.

Most widely-used virtual machines today are stack-based (e.g. the JVM, .NET’s
CLR, etc.) but a few recent ones are register-based (e.g. Lua 5.0).

Virtual machine input

Virtual machines take as input a program expressed as a sequence of
instructions:

– each instruction is identified by its opcode (operation code), a simple
number,

– when opcodes are one byte, they are often called byte codes,
– additional arguments (e.g. target of jump) appear after the opcode in the

stream.

VM implementation

Virtual machines are implemented in much the same way as a real processor:
1. the next instruction to execute is fetched from memory and decoded,
2. the operands are fetched, the result computed, and the state updated,
3. the process is repeated.

VM implementation

Which language are used to implement VMs?
Today, often C or C++ as these languages are:

– fast,
– at the right abstraction level,
– relatively portable.

Moreover, GCC and clang have an extension that can be used to speed-up
interpreters.

Implementing a VM in C
typedef enum {
 add, /* … */
} instruction_t;

void interpret() {
 static instruction_t program[] = { add /* … */ };
 instruction_t* pc = program;
 int* sp = …; /* stack pointer */
 for (;;) {
 switch (*pc++) {
 case add:
 sp[1] += sp[0];
 sp++;
 break;
 /* … other instructions */
 }
 }
}

Optimizing VMs

The basic, switch-based implementation of a virtual machine just presented
can be made faster using several techniques:

– threaded code,
– top of stack caching,
– super-instructions,
– JIT compilation.

Threaded code

Threaded code

In a switch-based interpreter, two jumps per instruction:
– one to the branch handling the current instruction,
– one from there back to the main loop.

The second one should be avoided, by jumping directly to the code handling
the next instruction.
This is the idea of threaded code.

Switch vs threaded

switch-based

main loop

add

sub

mul

Threaded

main

add

sub

mul

Program: add sub mul

Implementing threaded code

Two main variants of threading:
1. indirect threading, where instructions index an array containing pointers

to the code handling them,
2. direct threading, where instructions are pointers to the code handling

them.
Pros and cons:

– direct threading has one less indirection,
– direct threading is expensive on 64 bits architectures (one opcode = 64

bits).

Threaded code in C

Threaded code represents instructions using code pointers.
How can this be done in C?

– in standard (ANSI) C, with function pointers (slow),
– with GCC or clang, with label pointers (fast).

Direct threading in ANSI C

Direct threading in ANSI C:
– one function per VM instruction,
– the program is a sequence of function pointers,
– each function ends with code to handle the next instruction.

Easy but very slow!

Direct threading in ANSI C
typedef void (*instruction_t)();
static instruction_t* pc;
static int* sp = …;

static void add() {
 sp[1] += sp[0];
 ++sp;
 (*++pc)(); /* handle next instruction */
}

/* … other instructions */

static instruction_t program[] = { add, /* … */ };

void interpret() {
 sp = …;
 pc = program;
 (*pc)(); /* handle first instruction */
}

Direct threading in ANSI C

Major problems of direct threading in ANSI C:
– slower than switch-based,
– stack overflow in the absence of tail call elimination.

With compilers that do not do TCE, the only option is to use trampolines (or
similar), which is even slower!
Conclusion: direct threading in ANSI C is not realistic.

Direct threading with GCC

Direct threading with GCC or clang:
– one block per VM instruction,
– the program is a sequence of block pointers,
– each function ends with code to handle the next instruction.

This requires a non-standard extension called labels as values (basically, label
pointers).

Direct threading with GCC

void interpret() {
 void* program[] = { &&l_add, /* … */ };

 int* sp = …;
 void** pc = program;
 goto **pc; /* jump to first instruction */

 l_add:
 sp[1] += sp[0];
 ++sp;
 goto **(++pc); /* jump to next instruction */

 /* … other instructions */
}

label as value

computed goto

Threading benchmark

switch-based

trampoline

no trampoline (with TCE)

labels as values

0 0,5 1 1,5 2

Benchmark: 500'000'000 iterations of a loop
Processor: 2.3 GHz Intel Core i9
Compiler: clang 11.0.3
Optimization settings: -O3

Top-of-stack
caching

Top-of-stack caching

In a stack-based VM, the stack is typically represented as an array in memory,
accessed by almost all instructions.
Idea:
store topmost element(s) in registers.

However:
storing a fixed number of topmost elements is not a good idea!

Therefore:
store a variable number of topmost elements, e.g. at most one.

Top-of-stack caching

The top element is always cached:

t

Stack array Top-of-stack
register

… y x

Top-of-stack caching

The top element is always cached:

t

Stack array Top-of-stack
register

pop
… y x

Top-of-stack caching

The top element is always cached:

t

Stack array Top-of-stack
register

x
pop

… y x

… y

Top-of-stack caching

The top element is always cached:

t

Stack array Top-of-stack
register

x
pop

push u

… y x

… y

Top-of-stack caching

The top element is always cached:

t

Stack array Top-of-stack
register

x

u

pop

push u

… y x

… y x

… y

Top-of-stack caching

The top element is always cached:

t

Stack array Top-of-stack
register

x

u

pop

push u

… y x

… y x

… y
x moves

around unnecessarily

Top-of-stack caching

Either 0 or 1 top-of-stack element is cached:

t

Stack array Top-of-stack
register

… y x

Top-of-stack caching

Either 0 or 1 top-of-stack element is cached:

t

Stack array Top-of-stack
register

pop
… y x

Top-of-stack caching

Either 0 or 1 top-of-stack element is cached:

t

Stack array Top-of-stack
register

pop
… y x

… y x

Top-of-stack caching

Either 0 or 1 top-of-stack element is cached:

t

Stack array Top-of-stack
register

pop

push u

… y x

… y x

Top-of-stack caching

Either 0 or 1 top-of-stack element is cached:

t

Stack array Top-of-stack
register

u

pop

push u

… y x

… y x

… y x

Top-of-stack caching

Either 0 or 1 top-of-stack element is cached:

t

Stack array Top-of-stack
register

u

pop

push u

… y x

… y x

… y x
no more

unnecessary
movement!

Top-of-stack caching
Beware: caching a variable number of stack elements means that every
instruction must have one implementation per cache state (number of stack
elements currently cached)
E.g., when caching at most one stack element, the add instruction needs the
following two implementations:

add_0:
 tos = sp[0]+sp[1];
 sp += 2;
 // go to state 1

add_1:
 tos += sp[0];
 sp += 1;
 // stay in state 1

State 0: no elements in reg. State 1: top-of-stack in reg.

Benchmark

without TOS caching

with TOS caching

0 0,25 0,5 0,75 1

Benchmark: sum first 200'000'000 integers
Processor: 2.3 GHz Intel Core i9
Compiler: clang 11.0.3
Optimization settings: -O3

Super-instructions

Static super-instructions

Observation:
instruction dispatch is expensive in a VM.

Conclusion:
group several instructions into super-instructions.

Idea:
– use profiling to determine which sequences should be transformed into

super-instructions,
– modify the the instruction set of the VM accordingly.

E.g., if mul, add appears often in sequence, combine the two in a single madd
(multiply and add) super-instruction.

Dynamic super-instructions

Super-instructions can also be generated at run time, to adapt to the program
being run.
This is the idea of dynamic super-instructions.
Pushed to its limits: generate one super-instruction per basic-block.

L3VM

L3VM

L3VM is the VM of the L3 project. Main characteristics:
– it is a 32 bits VM:

– (untagged) integers are 32 bits,
– pointers are 32 bits,
– instructions are 32 bits,

– it is register-based (with an unconventional notion of register),
– it is simple: only 32 instructions.

Memory

Single 32-bit address space used to
store code and heap.
Code is stored starting at address 0,
the rest is used for the heap.
(Note: L3VM addresses are not the
same as those of the host).

0000000016

FFFFFFFF16

unused

Heap

Code

user-defined limit

Registers

Strictly speaking, L3VM has only four registers:
– the program counter PC, which contains the address of the instruction

being executed,
– the three base registers Ib, Lb and Ob, which contain either 0 or the

address of a heap-allocated block.

(Pseudo-)registers

Base registers point to heap-allocated blocks, whose slots are the
(pseudo-)registers used by the instructions. For example :
L3 = slot at index 3 of block referenced by Lb.

There are:
– 36 input pseudo-registers (I0 to I35),
– 36 output pseudo-registers (O0 to O35),
– 160 local pseudo-registers (L0 to L159),

and:
– 32 constant pseudo-registers (C0 to C31) containing the constants 0 to 31.

Function call and return

In L3VM, functions:
– get their arguments in their input registers (Ix),
– store their variables in their local registers (Lx),
– pass arguments to called functions through output registers (Ox).

To that end:
– CALL_… saves the caller's context (Ib, Lb, Ob and return address) in the

callee's first four input registers,
– RET restores the caller's context.

Non tail call example
Saving the caller’s context and installing the callee’s context during a non tail
call from a function f to a function g, with h being f's caller:

Ib
Lb
Ob

If rh …

Of …

Lf …

Ih Lh Oh

Non tail call example
Saving the caller’s context and installing the callee’s context during a non tail
call from a function f to a function g, with h being f's caller:

Ib
Lb
Ob

If rh …

Of …

Lf …

rf

Ih Lh Oh

Non tail call example
Saving the caller’s context and installing the callee’s context during a non tail
call from a function f to a function g, with h being f's caller:

Ib
Lb
Ob

If rh …

Of …

Lf …

rf
Ig

Ih Lh Oh

Tail call example
Saving the caller’s context and installing the callee’s context during a tail call
from a function f to a function g, with h being f's caller:

Ib
Lb
Ob

If rh …

Of …

Lf … Ih … Lh … Oh …

Tail call example
Saving the caller’s context and installing the callee’s context during a tail call
from a function f to a function g, with h being f's caller:

Ib
Lb
Ob

If rh …

Of …

Lf … Ih … Lh … Oh …

rh

Tail call example
Saving the caller’s context and installing the callee’s context during a tail call
from a function f to a function g, with h being f's caller:

Ib
Lb
Ob

If rh …

Of …

Lf … Ih … Lh … Oh …

rh
Ig

Tail call example
Saving the caller’s context and installing the callee’s context during a tail call
from a function f to a function g, with h being f's caller:

Ib
Lb
Ob

Of …

Ih … Lh … Oh …

rh
Ig

Return example
Restoring the caller’s context during a function return from g to h (g was tail
called from f) :

Ib
Lb
Ob

Ig rh …

Lg … Ih … Lh … Oh …

Og …

Return example
Restoring the caller’s context during a function return from g to h (g was tail
called from f) :

Ib
Lb
Ob

Ig rh …

Lg … Ih … Lh … Oh …

Og …

Return example
Restoring the caller’s context during a function return from g to h (g was tail
called from f) :

Ib
Lb
Ob

Ih … Lh … Oh …

Arithmetic instructions (1)
ADD Ra Rb Rc Ra ← Rb + Rc

SUB Ra Rb Rc Ra ← Rb − Rc

MUL Ra Rb Rc Ra ← Rb × Rc

DIV Ra Rb Rc Ra ← Rb ∕ Rc

MOD Ra Rb Rc Ra ← Rb % Rc

Ra, Rb, Rc: registers
PC implicitly augmented by 4 by each instruction

Arithmetic instructions (2)
LSL Ra Rb Rc Ra ← Rb << Rc

LSR Ra Rb Rc Ra ← Rb >> Rc

AND Ra Rb Rc Ra ← Rb & Rc

OR Ra Rb Rc Ra ← Rb | Rc

XOR Ra Rb Rc Ra ← Rb ^ Rc

Ra, Rb, Rc: registers
PC implicitly augmented by 4 by each instruction

Control instructions (1)
JLT Ra Rb D11 if Ra < Rb then PC ← PC + 4·D11

JLE Ra Rb D11 if Ra ≤ Rb then PC ← PC + 4·D11

JEQ Ra Rb D11 if Ra = Rb then PC ← PC + 4·D11

JNE Ra Rb D11 if Ra ≠ Rb then PC ← PC + 4·D11

JI D27 PC ← PC + 4·D27

Ra, Rb, Rc: registers,
Dk: k-bit signed displacement

Control instructions (2)
CALL_NI Ra (O0, O1, O2, O3) ← (Ib, Lb, Ob, PC + 4), Ib ← Ob, PC ← Ra

CALL_ND D27 like CALL_NI, except that PC ← PC + 4·D27

CALL_TI Ra (O0, O1, O2, O3) ← (I0, I1, I2, I3), Ib ← Ob, PC ← Ra

CALL_TD D27 like CALL_TI, except that PC ← PC + 4·D27

RET Ra r ← Ra, (PC, Ob, Lb, Ib) ← (I3, I2, I1, I0), O4 ← r

HALT Ra halt execution with the value of Ra

Ra: register,
Dk: k-bit signed displacement,

r: temporary value

Register instructions
LDLO Ra, S19 Ra ← S19

LDHI Ra, U16 Ra ← (U16 << 16) | (Ra & FFFF16)

MOVE Ra, Rb Ra ← Rb

RALO U8, V8 Lb ← new block of size U8 and tag 201
Ob ← new block of size V8 and tag 201

Ra, Rb: registers,
Sk: k-bit signed constant,

Uk, Vk: k-bit unsigned constants
PC implicitly augmented by 4 by each instruction

Block instructions
BALO Ra Rb T8 Ra ← new block of size Rb and tag T8

BSIZ Ra Rb Ra ← size of block Rb

BTAG Ra Rb Ra ← tag of block Rb

BGET Ra Rb Rc Ra ← element at index Rc of block Rb

BSET Ra Rb Rc element at index Rc of block Rb ← Ra

Ra, Rb, Rc: registers,
T8: 8-bit block tag

PC implicitly augmented by 4 by each instruction

I/O instructions

BREA Ra Ra ← byte read from console

BWRI Ra write least-significant byte of Ra to console

Ra: register
PC implicitly augmented by 4 by each instruction

Example
The factorial in (hand-coded) L3VM assembly:

 ;; I4 contains argument
 ;; O4 contains return value (after call)
fact: RALO 0,5
 JNE C0,I4,else
 RET C1
else: SUB O4,I4,C1
 CALL_ND fact
 MUL I4,I4,O4
 RET I4

