
Memory
management
Advanced Compiler Construction

Michel Schinz — 2021–05–06

Memory management

During execution, programs often use:
– more memory than is physically available, but
– not all of it at the same time.

The goal of memory management is to make good use of the available
physical memory.
Typically, programs allocate memory from:

– the stack, whose management is trivial,
– the heap, whose management is more complex.

The memory manager

The memory manager is the part of the run time system in charge of
managing the heap by (de)allocating blocks (or objects).
Allocation is usually explicit, but deallocation can be:

– explicit if the programmer asks for a block to be freed,
– implicit if the memory manager automatically tries to free unused blocks,

e.g. when running out of memory.

Explicit deallocation

Explicit memory deallocation presents several problems:
1. memory can be freed too early (dangling pointers),
2. memory can be freed too late (space leaks).

Therefore, most modern programming languages provide implicit
deallocation, a.k.a. automatic memory management.
(Note: often also called garbage collection, but this term designates a
specific kind of automatic memory management).

Implicit deallocation

Assumption of implicit memory deallocation:
Only unreachable blocks can be freed, as reachable ones could be accessed
in the future.

This assumption is:
– conservative, as reachable blocks might never be accessed anymore, but
– safe, as no pointer will ever point to deallocated memory.

Therefore, implicit memory deallocation:
– does not avoid space leaks, but
– completely avoids dangling pointers.

Garbage collection

Garbage collection (GC) is a common name for techniques that automatically
reclaim unreachable objects.
We'll look at:

1. reference counting,
2. mark & sweep,
3. copying, and
4. generational garbage collection.

Concepts common to all of them are introduced first.

Reachable objects

Reachable objects

The reachable objects are:
– those immediately accessible from global variables, the stack or registers :

the roots or root set,
– those reachable from other reachable objects, by following pointers.

They form the reachability graph.

Reachability graph example

R0

R1

R2

R3

Reachable Unreachable

(Im)precision

To compute the reachability graph, all pointers must be identifiable
unambiguously at run time!
If that is not possible, the graph can be approximated conservatively:

– it is safe (but sub-optimal) to consider unreachable objects as reachable,
– it is unsafe to consider reachable objects as unreachable.

Memory manager
data structures

Free list

The memory manager must know which parts of the heap are free and
allocated.
Free blocks are stored in a free list, which is often a more sophisticated data
structure than a simple list.

Block header
The memory manager must know several properties of the blocks it manages,
e.g. their size.
They are often stored in a block header, just before the area used by the
program.

header (size, etc.)

area used by the
program

pointer
returned to the

program

BiBoP
BiBoP (big bag of pages) decreases header overhead by splitting memory in
pages which:

– all have the same power-of-two size (s = 2b),
– are aligned on multiples of their size,
– only contain objects of identical size o,
– store the objects' size (o) at the beginning.

The size of an object can be retrieved by masking the b least-significant bits
of its address.

page

page block size objectsfree area

Fragmentation

The term fragmentation is used to designate two different but similar
problems associated with memory management:

– external fragmentation refers to the fragmentation of free memory in
many small blocks,

– internal fragmentation refers to the waste of memory due to the use of a
free block larger than required to satisfy an allocation request.

External fragmentation
The two heaps below have the same amount of free memory, but the first
suffers from external fragmentation while the second does not. Therefore,
some requests can be fulfilled by the second but not by the first.

f a f a f a

a f

fragmented

not fragmented

a

f

allocated block

free block

Internal fragmentation

The memory manager sometimes allocates more memory than requested,
e.g. to satisfy alignment constraints. This results in small amounts of wasted
memory scattered in the heap, and is called internal fragmentation.

memory block

requested size

allocated size

wasted memory

GC technique #1:
reference counting

Reference counting

The idea of reference counting (RC) is simple:
– every object carries a count of the number of pointers referencing it,
– when that count reaches 0, the object is unreachable and gets deallocated.

The maintenance of reference counts requires collaboration from the compiler
and/or the programmer.

Pros and cons of RC

Pros of reference counting:
– relatively easy to implement, even as a library,
– memory is reclaimed immediately.

Cons of reference counting:
– the counters take space,
– updating the counters takes time,
– cannot deal with cyclic structures.

Cyclic structures
The reference count of objects that are part of a cycle in the object graph
never reaches zero, even when they become unreachable!
This is the major problem of reference counting.

rc = 1

rc = 1

rc = 1

Cyclic structures

Problem: reference counts provide only an approximation of reachability. In
other words, we have:
reference_count(x) = 0 ⇒ x is unreachable

but the opposite is not true!

Uses of reference counting

Due to its problem with cyclic structures, reference counting is only used:
– in systems that disallow the creation of cycles (e.g. hard links on Unix file

systems),
– in combination with another GC that periodically collect cyclic structures

(e.g. in Python).

GC technique #2:
mark & sweep

Mark & sweep GC

Mark & sweep GC proceeds in two phases:
1. mark: reachable objects are marked,
2. sweep: unmarked, allocated objects are deallocated.

Typically:
– GC is triggered by lack of memory,
– the program is stopped until GC is done, to ensure that the reachability

graph is not modified while the GC traverses it.

Mark & sweep GC

R0

R1

R2

R3

Mark & sweep GC

R0

R1

R2

R3

Mark & sweep GC

R0

R1

R2

R3

Mark & sweep GC

R0

R1

R2

R3

Mark & sweep GC

R0

R1

R2

R3

Mark & sweep GC

R0

R1

R2

R3

Mark & sweep GC

R0

R1

R2

R3

Mark & sweep GC

R0

R1

R2

R3

Mark & sweep GC

R0

R1

R2

R3

Mark & sweep GC

R0

R1

R2

R3

Mark & sweep GC

R0

R1

R2

R3

Mark & sweep GC

R0

R1

R2

R3

Mark & sweep GC

R0

R1

R2

R3

Mark & sweep GC

R0

R1

R2

R3

Marking objects

Reachable objects can be marked by:
– setting one bit in the header (e.g. the LSB of the size, if it's always even),
– setting one bit in an external bit map, stored in an area that is private to the

GC.

Free list

In a mark & sweep GC, free blocks are not contiguous, and must be stored in
a free list of some sort.
Note: the list links can be stored in the blocks themselves, as they are free!

header
header

header
head of
free list

heap

Allocation policy

When more than one free block can be used to satisfy a request, the memory
manager uses an allocation policy to decide which one to use.
A good policy should:

– be fast,
– minimize fragmentation.

The most commonly used are:
– first fit: use the first suitable block,
– best fit: use the smallest suitable block.

Splitting and coalescing

During allocation, if the chosen block is bigger than what is requested, it must
be split in two:

– the first part is returned to the program,
– the other part is put back into the free list.

During deallocation, if the freed block is adjacent to other free blocks, they
must be coalesced into one.

Reachability graph traversal

Marking objects is usually done by depth-first traversal of the reachability
graph. When done recursively, this can consume an unbounded amount of
stack space, which can lead to stack overflow.
Solutions (not examined here):

– recover from stack overflows,
– do pointer reversal (i.e., store the stack in the traversed objects, in a way).

Sweeping objects

The sweeping phase:
– traverses the whole heap,
– rebuilds the free list by adding unmarked objects to it,
– does coalescing at the same time.

Since unreachable objects cannot become reachable again, the sweeping
phase can be done incrementally. This is called lazy sweep.

Sweeping and coalescing
The sweeping phase:

– traverses the whole heap, rebuilding the free list,
– performs coalescing at the same time.

head of
free list

he
ap

not markedmarked

sweeping
pointer

Sweeping and coalescing
The sweeping phase:

– traverses the whole heap, rebuilding the free list,
– performs coalescing at the same time.

head of
free list

he
ap

not markedmarked

sweeping
pointer

Sweeping and coalescing
The sweeping phase:

– traverses the whole heap, rebuilding the free list,
– performs coalescing at the same time.

head of
free list

he
ap

not markedmarked

sweeping
pointer

Sweeping and coalescing
The sweeping phase:

– traverses the whole heap, rebuilding the free list,
– performs coalescing at the same time.

head of
free list

he
ap

not markedmarked

sweeping
pointer

Sweeping and coalescing
The sweeping phase:

– traverses the whole heap, rebuilding the free list,
– performs coalescing at the same time.

head of
free list

he
ap

not markedmarked

sweeping
pointer

Sweeping and coalescing
The sweeping phase:

– traverses the whole heap, rebuilding the free list,
– performs coalescing at the same time.

head of
free list

he
ap

not markedmarked

sweeping
pointer

Sweeping and coalescing
The sweeping phase:

– traverses the whole heap, rebuilding the free list,
– performs coalescing at the same time.

head of
free list

he
ap

not markedmarked

sweeping
pointer

Sweeping and coalescing
The sweeping phase:

– traverses the whole heap, rebuilding the free list,
– performs coalescing at the same time.

head of
free list

he
ap

not markedmarked

sweeping
pointer

Sweeping and coalescing
The sweeping phase:

– traverses the whole heap, rebuilding the free list,
– performs coalescing at the same time.

head of
free list

he
ap

not markedmarked

sweeping
pointer

Sweeping and coalescing
The sweeping phase:

– traverses the whole heap, rebuilding the free list,
– performs coalescing at the same time.

head of
free list

he
ap

not markedmarked

sweeping
pointer

Sweeping and coalescing
The sweeping phase:

– traverses the whole heap, rebuilding the free list,
– performs coalescing at the same time.

head of
free list

he
ap

not markedmarked

sweeping
pointer

Sweeping and coalescing
The sweeping phase:

– traverses the whole heap, rebuilding the free list,
– performs coalescing at the same time.

head of
free list

he
ap

not markedmarked

sweeping
pointer

Sweeping and coalescing
The sweeping phase:

– traverses the whole heap, rebuilding the free list,
– performs coalescing at the same time.

head of
free list

he
ap

not markedmarked

sweeping
pointer

Sweeping and coalescing
The sweeping phase:

– traverses the whole heap, rebuilding the free list,
– performs coalescing at the same time.

head of
free list

he
ap

not markedmarked

sweeping
pointer

Sweeping and coalescing
The sweeping phase:

– traverses the whole heap, rebuilding the free list,
– performs coalescing at the same time.

head of
free list

he
ap

not markedmarked

sweeping
pointer

Sweeping and coalescing
The sweeping phase:

– traverses the whole heap, rebuilding the free list,
– performs coalescing at the same time.

head of
free list

he
ap

not markedmarked

sweeping
pointer

Sweeping and coalescing
The sweeping phase:

– traverses the whole heap, rebuilding the free list,
– performs coalescing at the same time.

head of
free list

he
ap

not markedmarked

sweeping
pointer

Sweeping and coalescing
The sweeping phase:

– traverses the whole heap, rebuilding the free list,
– performs coalescing at the same time.

head of
free list

he
ap

not markedmarked

sweeping
pointer

Conservative M&S GC

A conservative mark & sweep garbage collector collects memory without
unambiguously identify pointers at run time.
Doable iff the approximation of the reachability graph includes the actual
reachability graph.

Conservative M&S GC

Conservative GC assumption:
Everything that looks like a pointer to an allocated object is a pointer to an
allocated object.

This assumption is:
– conservative (i.e. can lead to retention of unreachable objects),
– safe (i.e. cannot lead to reachable object being freed).

But: the GC must use as many hints as possible to minimize the mis-
identification of pointers.

Pointer identification

Several characteristics of the architecture or compiler can be used to filter the
set of potential pointers, e.g.:

– Many architectures require pointers to be aligned on 2 or 4 bytes
boundaries. Therefore, ignore unaligned potential pointers.

– Many compilers guarantee that if an object is reachable, then there exists at
least one pointer to its beginning. Therefore, ignore potential interior
pointers.

Exercise

The POSIX malloc function does not clear the memory it returns to the user
program, for performance reasons.
In a garbage collected environment, is it also a good idea to return freshly-
allocated blocks to the program without clearing them first? Explain.

GC technique #3:
copying GC

Copying GC

Copying garbage collection works by:
– splitting the heap in two semi-spaces of equal size:

1. the from-space, and
2. the to-space,

– allocating memory from from-space only,
– when from-space is full:

– copying all reachable object to to-space,
– updating pointers accordingly,
– exchanging the role of the two spaces.

Copying GC

R0 R1 R2 R3

From To

1

2 3

Copying GC

R0 R1 R2 R3

From To

1

2 3

Copying GC

R0 R1 R2 R3

From To

1

2 3

Copying GC

R0 R1 R2 R3

From To

1

2 3

1

Copying GC

R0 R1 R2 R3

From To

1

2 3

1

Copying GC

R0 R1 R2 R3

From To

1

2 3

1

Copying GC

R0 R1 R2 R3

From To

1

2 3

1

Copying GC

R0 R1 R2 R3

From To

1

2 3

1 2

Copying GC

R0 R1 R2 R3

From To

1

2 3

1 2

Copying GC

R0 R1 R2 R3

From To

1

2 3

1 2

Copying GC

R0 R1 R2 R3

From To

1

2 3

1 2 3

Copying GC

R0 R1 R2 R3

From To

1

2 3

1 2 3

Copying GC

R0 R1 R2 R3

From To

1

2 3

1 2 3

Copying GC

R0 R1 R2 R3

From To

1 2 3

Copying GC

R0 R1 R2 R3

From To

1 2 3

FromTo

Allocation in a copying GC

In a copying GC, memory is allocated linearly in from-space:
– no free list to maintain,
– no search to perform to find a free block,
– no allocation policy.

All that is required is a pointer to the border between the allocated and free
area of from-space.
Therefore: allocation in a copying GC is as fast as stack allocation.

Forwarding pointers

Objects must be copied to to-space only once! This is obtained by:
– storing a forwarding pointer in the from-space version of the object once

it has been copied,
– checking for the presence of a forwarding pointer when visiting an object

and:
– copying it if no forwarding pointer is found,
– using the forwarding pointer otherwise.

Cheney's copying GC

Copying can be done by depth-first traversal of the reachability graph, but this
can lead to stack overflow.
Cheney’s copying GC does:

– a breadth-first traversal of the reachability graph,
– requires only one pointer as additional state.

Cheney's copying GC

Breadth-first traversal requires remembering the set of objects that:
– have been visited, but
– whose children haven't been visited.

Cheney's observation:
This set can be represented as a pointer into to-space (called scan) that
partitions pointers to objects that have been visited and pointers to objects
that haven't been visited.

Cheney's copying GC

1

3

4

2

scan free
From To

R0 R1 R2 R3

Cheney's copying GC

1

3

4

2

scan free
From To

R0 R1 R2 R3

Cheney's copying GC

1

3

4

2

scan free
From To

R0 R1 R2 R3

Cheney's copying GC

1

3

4

2

scan free
From To

R0 R1 R2 R3

1

Cheney's copying GC

1

3

4

2

scan free
From To

R0 R1 R2 R3

1

Cheney's copying GC

1

3

4

2

scan free
From To

R0 R1 R2 R3

1

Cheney's copying GC

1

3

4

2

scan free
From To

R0 R1 R2 R3

1

Cheney's copying GC

1

3

4

2

scan free
From To

R0 R1 R2 R3

1

Cheney's copying GC

1

3

4

2

scan free
From To

R0 R1 R2 R3

1

2

Cheney's copying GC

1

3

4

2

scan free
From To

R0 R1 R2 R3

1

2

Cheney's copying GC

1

3

4

2

scan free
From To

R0 R1 R2 R3

1

2

Cheney's copying GC

1

3

4

2

scan free
From To

R0 R1 R2 R3

1

2

Cheney's copying GC

1

3

4

2

scan free
From To

R0 R1 R2 R3

1

2

Cheney's copying GC

1

3

4

2

scan free
From To

R0 R1 R2 R3

1

2

Cheney's copying GC

1

3

4

2

scan free
From To

R0 R1 R2 R3

1

2

3

Cheney's copying GC

1

3

4

2

scan free
From To

R0 R1 R2 R3

1

2

3

Cheney's copying GC

1

3

4

2

scan free
From To

R0 R1 R2 R3

1

2

3

Cheney's copying GC

1

3

4

2

scan free
From To

R0 R1 R2 R3

1

2

3

Cheney's copying GC

1

3

4

2

scan free
From To

R0 R1 R2 R3

1

2

3

Cheney's copying GC

1

3

4

2

scan free
From To

R0 R1 R2 R3

1

2

3

Cheney's copying GC

1

3

4

2

scan free
From To

R0 R1 R2 R3

1

2

3

4

Cheney's copying GC

1

3

4

2

scan free
From To

R0 R1 R2 R3

1

2

3

4

Cheney's copying GC

1

3

4

2

scan free
From To

R0 R1 R2 R3

1

2

3

4

Cheney's copying GC

1

3

4

2

scan free
From To

R0 R1 R2 R3

1

2

3

4

Cheney's copying GC

1

3

4

2

scan free
From To

R0 R1 R2 R3

1

2

3

4

Cheney's copying GC

1

3

4

2

scan free
From To

R0 R1 R2 R3

1

2

3

4

Copying vs mark & sweep
The pros and cons of copying garbage collection, compared to mark &
sweep.

Pros Cons

no external fragmentation uses twice as much (virtual) memory

very fast allocation requires precise identification of
pointers

no traversal of dead objects copying can be expensive

Exercise

In a system where integers are tagged, a GC can differentiate integers from
pointers by looking at the tag bit.
However, during an arithmetic operation, an integer can temporarily be stored
in untagged form in a register. Therefore, the GC could mistake it for a real
pointer.
Is this problematic? If yes, propose a solution. If not, explain why.

Mostly-copying GC

A copying GC can also be used in situations where not all pointers can be
identified unambiguously. This is the idea of mostly-copying GC, due to
Bartlett.
In such a GC, objects are partitioned in two classes:

1. those for which some pointers are ambiguous, usually because they
appear in the stack or registers,

2. those for which all pointers are known unambiguously.
Objects of the first class are pinned, i.e. left where they are, while the others —
the vast majority, generally — are copied as usual.

Mostly-copying GC

Objects cannot be pinned if the from and to spaces are organized as two
separate areas of memory, because from-space must be completely empty
after GC.
Therefore, a mostly-copying GC organizes memory in pages of fixed size,
tagged with the space to which they belong. Then, during GC :

– pinned objects are left on their page, whose tag is updated to "move" them
to to-space,

– other objects are copied (and compacted) as usual.

GC technique #4:
generational GC

Generational GC

Empirical observation: a large majority of the objects die young, while a small
minority lives for very long.
Generational garbage collection refines other GC techniques and takes
advantage of this by:

– partitioning objects in generations, based on age,
– collecting the young generation(s) more often.

Goals:
– augment the amount of memory collected per objects visited,
– (in a copying GC): avoid repeatedly copying long-lived objects.

Generational GC

In a generational GC, objects are partitioned in two (or more) generations, the
young and the old:

– the young generation is smaller than the old one,
– all objects are allocated in the young generation.

When the young generation is full, a minor collection is performed to:
– collect memory in that generation only,
– promote some objects to the old generation, based on a promotion

policy.
When the old generation is full, a major (or full) collection is performed to
collect memory in all generations.

Minor collection example
from to

young
generation

old
generation

R0 R1 R2 R3

1

3

5

4

6

2

Minor collection example
from to

young
generation

old
generation

R0 R1 R2 R3

1

3

5

4

6

2

Minor collection example
from to

young
generation

old
generation

R0 R1 R2 R3

1

3

5

4

6

2

Minor collection example
from to

young
generation

old
generation

R0 R1 R2 R3

1

3

5

4

6

2

6

Minor collection example
from to

young
generation

old
generation

R0 R1 R2 R3

1

3

5

4

6

2

6

Minor collection example
from to

young
generation

old
generation

R0 R1 R2 R3

1

3

5

4

6

2

6

Minor collection example
from to

young
generation

old
generation

R0 R1 R2 R3

1

3

5

4

6

2

6

Minor collection example
from to

young
generation

old
generation

R0 R1 R2 R3

1

3

5

4

6

2

6

3
Object 3 is
considered old
enough to be
promoted.

Minor collection example
from to

young
generation

old
generation

R0 R1 R2 R3

1

3

5

4

6

2

6

3
Object 3 is
considered old
enough to be
promoted.

Minor collection example
from to

young
generation

old
generation

R0 R1 R2 R3

1

3

5

4

6

2

6

3
Object 3 is
considered old
enough to be
promoted.

Minor collection example
from to

young
generation

old
generation

R0 R1 R2 R3

1

3

5

4

6

2

6

3
Object 3 is
considered old
enough to be
promoted.

Minor collection example
from to

young
generation

old
generation

R0 R1 R2 R3

1

3

5

4

6

2

6

3
Object 3 is
considered old
enough to be
promoted.

Minor collection example
from to

young
generation

old
generation

R0 R1 R2 R3

1 2

6

3
Object 3 is
considered old
enough to be
promoted.

Heap organization

from to

from to

from to

from

from to

from to
Eden

one semi-space
per generation

next generation
as semi-space

separate
creation space

yo
un

g
ol

d

copy promotion

too much
memory wasted…

too many objects
promoted…

good!

Hybrid heap organization

Instead of managing all generations using a copying algorithm, it is also
possible to manage some of them — the oldest, typically — using a mark &
sweep algorithm.

Promotion policies

Generational GCs use a promotion policy to decide when objects should be
advanced to an older generation.
The simplest one is to advance all survivors, which is:

– simple to implement (no object age to record),
– bad, as extremely young objects can be promoted.

A better policy is to wait until objects survive a second collection before
promoting them.

Minor collection roots
The roots used for a minor collection must also include all pointers from
older generations to younger ones. Otherwise, objects reachable only from
the old generation would incorrectly get collected!

R0 R1 R2 R3

young

old

from to

Inter-generational pointers

Pointers from old to young generations, called inter-generational pointers
can be handled in two different ways:

1. by scanning — without collecting — older generations during a minor
collection,

2. by detecting pointer writes using a write barrier — implemented either in
software or through hardware support — and remembering inter-
generational pointers.

Remembered set

A remembered set contains all old objects pointing to young objects.
The write barrier maintains this set by adding objects to it if and only if:

– the object into which the pointer is stored is not yet in the remembered set,
and

– the pointer is stored in an old object, and points to a young one (can also
be checked later by the collector).

Card marking

Card marking is another technique to detect inter-generational pointers:
– memory is divided into cards (small, fixed sized areas),
– a card table remember which cards potentially contain inter-generational

pointers,
– on each pointer write, the card is marked in the table,
– marked cards are scanned for inter-generational pointers during collection.

Nepotism
Since old generations are not collected as often as young ones, it is possible
for dead old objects to prevent the collection of dead young objects.
This problem is called nepotism.

R0 R1 R2 R3

young

old

from to

Pros and cons

Pros of generational GCs:
– reduce pause time, since only the youngest generation is collected most of

the time,
– avoid repeatedly copying long-lived objects in copying GCs.

Cons of generational GCs:
– maintaining the remembered set costs time,
– nepotism.

Other kinds of
garbage collectors

Incremental/concurrent GC

To reduce GC pauses, which is very important for interactive applications:
– incremental GCs collect memory in incremental steps,
– concurrent GCs collect memory in a thread executing concurrently with

the application.
Main difficulty:
Deal with modifications to the reachability graph made by the application
while they attempt to compute it.

Usually solved using read or write barriers, used to ensure that the reachability
graph observed by the GC is a valid approximation of the real one.

Parallel GC

Some parts of GC can be performed in parallel on several processor cores,
e.g. the marking phase of a M&S GC.
Remember: parallelism ≠ concurrency, so a parallel GC doesn't have to be
concurrent, and a concurrent GC doesn't have to be parallel.

Additional GC
features

Finalizers

Some GCs make it possible to associate finalizers with objects, which are
functions called when an object is about to be collected.
Finalizers are generally used to free “external” resources associated with the
object about to be freed.
Since there is no guarantee about when finalizers are invoked, the resource in
question should not be scarce.

Finalizer issues

Finalizers are tricky for a number of reasons:
– what should be done if a finalizer makes the finalized object reachable

again — e.g. by storing it in a global variable?
– how do finalizers interact with concurrency — e.g. in which thread are they

run?
– how can they be implemented efficiently in a copying GC, which doesn’t

visit dead objects?

Weak references

When a GC encounters a reference (i.e. pointer), it usually considers it as
strong, in the sense that it will prevent the referenced object from being
deallocated.
Some GCs offer weak references:

– if an object is reachable only through weak references, it is deallocated,
– when that happens, all (weak) references to it are atomically cleared.

This is useful to implement caches, for example.

