
Course introduction
Advanced Compiler Construction 

Michel Schinz — 2025–02–20

1

General 
information

2

Course goals

The goal of this course is to teach you: 
– how to compile high-level functional and object-oriented languages, 
– how to optimize the generated code, and 
– how to support code execution at run time. 

To achieve this, the course is split in three parts: 
1. compilation of high-level concepts (e.g. closures), 
2. intermediate languages and optimizations, 
3. virtual machines and garbage collection.

3

Prerequisite skills

To complete the project successfully, you need: 
– good knowledge of functional programming, ideally in Scala, 
– good knowledge of (relatively) low-level programming in C. 

Beware: acquiring these skills during the course can be challenging.

4



Evaluation

Element Points

P1: conversion to CPS 80

P2: values representation 40

P3: closure conversion 80

P4: optimization 100

P5: garbage collector 100

Oral exam 100

Total 500

5

Resources

Lecturer: 
Michel Schinz 

Assistants: 
Alexandre Pinazza, Marcin Wojnarowski 

Web page: 
https://cs420.epfl.ch 

Forum: 
https://edstem.org/eu/courses/1949/discussion

6

Course overview

7

What is a compiler?
Your current view of a compiler must be something like this:

Lexical analysis

Syntactical analysis

Name & type analysis

Code generation

Character stream

Token stream

Tree

Attributed tree

Executable code

Scanner

Parser

Analyzer

Generator

8



What is a compiler, really?
Real compilers are often more complicated…

Scanner

Parser

Analyzer

Generator

multiple 
simplification and 

optimization 
phases

sophisticated 
runtime system

9

Additional phases

Simplification (or lowering) phases 
translate complex concepts of the language (e.g. pattern matching) into 
simpler ones. 

Optimization phases 
try to improve the program's usage of some resource (e.g. CPU time, 
memory).

10

Simplification phases
Example of a simplification phase in Java compilers: 
transformation of nested classes into top-level ones.

class Out { 
  void f1() { } 
  class In { 
    void f2() { 
      f1(); 
    } 
  } 
}

class Out { 
  void f1() { } 
} 
class Out$In { 
  final Out this$0; 
  Out$In(Out o) { 
    this$0 = o; 
  } 
  void f2() { 
    this$0.f1(); 
  } 
}

11

Optimization phases
Example of an optimization phase in Java compilers: 
removal of dead code, i.e. code that can never be executed.

class C { 
  public final static boolean debug = !true; 
  int f() { 
    if (debug) { 
      System.out.println("C.f() called"); 
    } 
    return 10; 
  } 
}

dead code, 
removed during 

compilation

12



Intermediate representations

To manipulate the program, simplification and optimization phases must 
represent it in some way. Options: 

– use the abstract syntax tree (AST), 
– use another intermediate representation (IR). 

Sophisticated compilers usually use several different IRs.

13

Run time system

Apart from the compiler, a complete run time system (RTS) must be written, 
to provide various services to executing programs, like: 

– code loading and linking, 
– code interpretation, compilation and optimization, 
– memory management (garbage collection), 
– concurrency, 
– etc. 

That's a lot, and Java RTSs, for example, are often more complex than Java 
compilers!

14

Memory management

Most modern programming languages offer automatic memory 
management: the programmer allocates memory explicitly, but deallocation 
is performed automatically. 
The deallocation of memory is usually performed by a part of the run time 
system called the garbage collector (GC). 
A garbage collector periodically frees all memory that has been allocated by 
the program but is not reachable anymore.

15

Virtual machines
Instead of targeting a real processor, a compiler can target a virtual one, 
usually called a virtual machine (VM). The produced code is then interpreted 
by a program emulating the virtual machine. 
Virtual machines have many advantages: 

– the compiler can target a single architecture, 
– the program can easily be monitored during execution, e.g. to prevent 

malicious behavior, or provide debugging facilities, 
– the distribution of compiled code is easier. 

The main (only?) disadvantage of virtual machines is their speed: it is always 
slower to interpret a program in software than to execute it directly in 
hardware.

16



Dynamic (JIT) compilation

To make virtual machines faster, dynamic, or just-in-time (JIT) compilation 
was invented. 
The idea is simple: Instead of interpreting a piece of code, the virtual machine 
translates it to machine code, and hands that code to the processor for 
execution. 
This is usually faster than interpretation.

17

Summary

Compilers for high-level languages are more complex than the ones you’ve 
studied, since: 

– they must translate high-level concepts like pattern-matching, anonymous 
functions, etc. to lower-level equivalents, 

– they must be accompanied by a sophisticated run time system, and 
– they should produce optimized code. 

This course will be focused on these aspects of compilers and run time 
systems.

18


