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Optimization

Goal: rewrite the program to a new one that is: 
– behaviorally equivalent to the original one, 
– better in some respect — e.g. faster, smaller, more energy-efficient, etc. 

Optimizations can be broadly split in two classes: 
– machine-independent optimizations are high-level and do not depend 

on the target architecture, 
– machine-dependent optimizations are low-level and depend on the 

target architecture. 
This lesson: machine-independent, rewriting optimizations.



IRs and 
optimizations



The importance of IRs

Intermediate representations (IRs) have a dramatic impact on optimizations, 
which generally work in two steps: 

1. the program is analyzed to find optimization opportunities, 
2. the program is rewritten based on the analysis. 

The IR should make both steps as easy as possible.



Case 1: constant propagation

Consider the following program fragment in some imaginary IR: 
x ← 7 
… 

Question: can all occurrences of x be replaced by 7? 
Answer: it depends on the IR: 

– if it allows multiple assignments, no (further data-flow analyses are 
required), 

– if it disallows multiple assignment, yes!



Other simple optimizations

Multiple assignments make most simple optimizations hard: 
– common subexpression elimination, which consists in avoiding the 

repeated evaluation of expressions, 
– (simple) dead code elimination, which consists in removing assignments to 

variables whose value is not used later, 
– etc. 

Common problem: analyses are required to distinguish the various “versions” 
of a variable that appear in the program. 
Conclusion: a good IR should not allow multiple assignments to a variable!



Case 2: inlining

Inlining replaces a call to a function by a copy of the body of that function, with 
parameters replaced by the actual arguments. 
The IR used also has a dramatic impact on it, as we can see if we try to do 
inlining on the AST — which might look sensible at first.



Naïve inlining: problem #1
(def print/ret (fun (x) (int-print x) x)) 
(def twice (fun (y) (+ y y))) 
(def f (fun (z) (twice (print/ret z))))

incorrect inlining 
of twice in f

(def f (fun (z) 
          (+ (print/ret z) 
             (print/ret z))))

Possible solution: bind actual parameters to variables (using a let) to ensure 
that they are evaluated at most once.

z is 
printed 
twice!



Naïve inlining: problem #2
(def first (fun (x y) x)) 
(def print/ret 
  (fun (z) (first z (int-print z))))

incorrect inlining of 
first in print/ret

(def print/ret (fun (z) z))

Possible solution: bind actual parameters to variables (using a let) to ensure 
that they are evaluated at least once.

z isn't 
printed at all!



Easy inlining

Common solution: 
bind actual arguments to variables before using them in the body of the 
inlined function. 

However: 
the IR can also avoid the problem by ensuring that actual parameters are 
always atoms (variables/constants). 

Conclusion: 
a good IR should only allow atomic arguments to functions.



IR comparison

Conclusion: 
– standard RTL/CFG is: 

– bad as its variables are mutable, but 
– good as it allows only atoms as function arguments, 

– RTL/CFG in SSA form and CPS/L3 are: 
– good as their variables are immutable, 
– good as they only allow atoms as function arguments.



Simple CPS/L3 
optimizations



Rewriting optimizations

The rewriting optimizations for CPS/L3 are specified as a set of rewriting rules 
of the form T ⇝opt T′. 
These rules rewrite a CPS/L3 term T to an equivalent — but hopefully more 
efficient — term T′.



(Non-)shrinking rules

We can distinguish two classes of rewriting rules: 
1. shrinking rules rewrite a term to an equivalent but smaller one, and can 

be applied at will, 
2. non-shrinking rules rewrite a term to an equivalent but potentially larger 

one, and must be applied carefully. 
Except for inlining, all optimizations we will see are shrinking.



Optimization contexts

Rewriting rules can only be applied in specific locations. For example, it would 
be incorrect to try to rewrite the parameter list of a function. 
We express this constraint by specifying all the contexts in which it is valid to 
perform a rewrite, where a context is a term with a single hole denoted by □. 

The hole of a context C can be plugged with a term T, an operation written as 
C[T]. 
For example, if C is (if □ ct cf), then C[(= x y)] is 

(if (= x y) ct cf).



Optimization contexts

Copt ::= □ 

  | (letp ((n (p a1 …))) Copt) 
  | (letc ((c1 e1) … (ci (cnt (ni,1 …) Copt)) … (ck ek)) e) 
  | (letc ((c1 e1) …) Copt) 
  | (letf ((f1 e1) … (fi (fun (ni,1 …) Copt)) … (fk ek)) e) 
  | (letf ((f1 e1) …) Copt)



Optimization relation

By combining the optimization rewriting rules — presented later — and the 
optimization contexts, it is possible to specify the optimization relation    opt 
that rewrites a term to an optimized version: 
Copt[T] ⇒opt Copt[T′]  where  T ⇝opt T′

⇒



Dead code elimination

(letp ((n (p a1 …))) e) 
  ⇝opt e 
[when n is not free in e and p ∉ { byte-read, byte-write, block-set! }] 

(letf ((n1 f1) … (ni-1 fi-1) (ni fi) (ni+1 fi+1)… (nk fk)) e) 
  ⇝opt (letf ((n1 f1) … (ni-1 fi-1) (ni+1 fi+1) … (nk fk)) e) 
[when ni is not free in {f1, …, fi-1, fi+1, … fk, e}] 

The rule for continuations is similar to the one for functions.



Dead code elimination

Limitation: 
Does not eliminate dead, mutually-recursive functions. 

Solution: 
– start from the main expression of the program, and 
– identify all functions transitively reachable from it. 

All unreachable functions are dead.



CSE

(letp ((n1 (+ a1 a2))) 
  Copt[(letp ((n2 (+ a1 a2))) e)]) 
  ⇝opt (letp ((n1 (+ a1 a2))) Copt[e{n2→n1}]) 

(letp ((n1 (- a1 a2))) 
  Copt[(letp ((n2 (- a1 a2))) e)]) 
  ⇝opt (letp ((n1 (- a1 a2))) Copt[e{n2→n1}]) 

etc.



CSE

Limitation: 
Some opportunities are missed because of scoping. 

Example: 
Common subexpression (+ y z) is not optimized: 
(letc ((c1 (cnt () 
             (letp ((x1 (+ y z))) 
                …))) 
       (c2 (cnt () 
             (letp ((x2 (+ y z))) 
                …)))) 
  …)



η-reduction
(letc ((c1 e1) … 
       (ci (cnt (n1 …) (appc d n1 …))) … 
       (ck ek)) 
  e) 
  ⇝opt (letc ((c1 e1{ci→d}) … (ck ek{ci→d})) e{ci→d}) 

(letf ((n1 f1) … 
       (ni (fun (c m1 …) (appf g c m1 …)) … 
       (nk fk)) 
  e) 
  ⇝opt (letf ((n1 f1{ni→g}) … (nk fk{ni→g})) e{ni→g}) 
[when g ∉ {m1, …}]



Constant folding (1)
(letp ((n (+ l1 l2))) e) 
  ⇝opt e{n→(l1+l2)} 
[when l1 and l2 are integer literals] 

(letp ((n (- l1 l2))) e) 
  ⇝opt e{n→(l1−l2)} 
[when l1 and l2 are integer literals] 

(letp ((n (* l1 l2))) e) 
  ⇝opt e{n→(l1×l2)} 
[when l1 and l2 are integer literals] 

etc.



Constant folding (2)

(if (= a a) ct cf) 
  ⇝opt (appc ct) 

(if (< a a) ct cf) 
  ⇝opt (appc cf) 

etc.



Neutral/absorbing elements
(letp ((n (* 1 a))) e) 
  ⇝opt e{n→a} 
(letp ((n (* a 1))) e) 
  ⇝opt e{n→a} 

(letp ((n (* 0 a))) e) 
  ⇝opt e{n→0} 
(letp ((n (* a 0))) e) 
  ⇝opt e{n→0} 

etc.



Block primitives

(letp ((b (block-alloc t s))) 
  Copt[(letp ((u (block-set! b i a))) 
    C′opt[(letp ((n (block-get b i))) e)])]) 
  ⇝opt (letp ((b (block-alloc t s))) 
        Copt[(letp ((u (block-set! b i a))) 
          C′opt[e{n→a}])]) 
[when tag t identifies a block that is not modified after initialization, e.g. a 
closure block]



Exercise

CPS/L3 contains the following block primitives: 
– block-alloc tag size 
– block-tag block 
– block-size block 
– block-get block index 
– block-set! block index value 

Informally describe three rewriting optimizations that could be performed on 
these primitives, and in which conditions they could be performed.



CPS/L3 inlining



(Non-)shrinking inlining

We can distinguish two kinds of inlining: 
1. shrinking inlining, for functions/continuations that are applied exactly 

once, 
2. non-shrinking inlining, for other functions/continuations. 

Shrinking inlining can be applied at will, non-shrinking cannot.



Shrinking Inlining

(letf ((f1 e1) … (fi-1 ei-1) (fi (fun (ci ni,1 …) ei)) (fi+1 ei+1) … (fk ek)) 
  Copt[(appf fi c m1 …)]) 
  ⇝opt (letf ((f1 e1) …(fi-1 ei-1)(fi+1 ei+1)… (fk ek)) 
        Copt[ei{ci→c}{ni,1→m1}…]) 
  [when fi is not free in Copt, e1, …, en] 

Similar rules exist to do the inlining inside of the body of one of the functions.



Non-shrinking Inlining

In non-shrinking inlining, fresh versions of bound names should be created to 
preserve their global uniqueness: 
(letf (… (fi (fun (ci ni,1 …) ei)) …) 
  Copt[(appf fi c m1 …)]) 
  ⇝opt (letf (… (fi (fun (ci ni,1 …) ei)) …) 
       Copt[ei{ci→c}{ni,1→m1}…]) 

Similar rules exist to do the inlining inside of the body of one of the functions.



Inlining heuristics (1)

Heuristics must be used to decide when to perform non-shriking inlining. 
They typically combine several factors, like: 

– the size of the candidate function — smaller ones should be inlined more 
eagerly than bigger ones, 

– the number of times the candidate is called in the whole program — a 
function called only a few times should be inlined, 

(continued on next slide)



Inlining heuristics (2)

– the nature of the candidate — not much gain can be expected from the 
inlining of a recursive function, 

– the kind of arguments passed to the candidate, and/or the way these are 
used in the candidate — constant arguments could lead to further 
reductions in the inlined candidate, especially if it combines them with 
other constants, 

– etc.



Exercise

Imagine an imperative intermediate language equipped with a return 
statement to return from the current function to its caller. 

1. Describe the problem that would appear when inlining a function 
containing such a return statement. 

2. Explain how a return statement could be encoded in CPS/L3 and why 
such an encoding would not suffer from the above problem.



CPS/L3 
“contification”



Contification

Contification: transforms functions into continuations. 
Interesting optimization as it transforms functions, which are expensive 
(closures) into continuations, which are cheap.



Contification example

Example: the loop function in the L3 example below can be contified, leading 
to efficient compiled code. 
(def fact 
  (fun (x) 
    (rec loop ((i 1) (r 1)) 
      (if (> i x) 
          r 
          (loop (+ i 1) (* r i))))))



Contifiability

A CPS/L3 function is contifiable if and only if it always returns to the same 
location — because then it does not need a return continuation. 

– Non-recursive case: true iff that function is only used in appf nodes, in 
function position, and always passed the same return continuation. 

– Recursive case: slightly more involved — see later.



Non-recursive contification

The contification of the non-recursive function f is given by: 
(letf ((f (fun (c a1 …) e))) 
  Copt[C′opt[(appf f c0 n1,1 …), (appf f c0 n2,1, …), …]]) 
  ⇝opt Copt[(letc ((m (cnt (a1 …) e{c→c0}))) 
          C′opt[(appc m n1,1 …), (appc m n2,1 …), …])] 

where: 
– f does not appear free in Copt or C′opt, 
– C′opt is the smallest (multi-hole) context enclosing all applications of f, 
– c0 is the (single) return continuation that is passed to function f.



Recursive contifiability

A set of mutually-recursive functions F = { f1, …, fn } is contifiable — which we 
write Cnt(F) — if and only if every function in F is always used in one of the 
following two ways: 

1. applied to a common return continuation, or 
2. called in tail position by a function in F. 

Intuitively, this ensures that all functions in F eventually return through the 
common continuation.



Example
As an example, functions even and odd in the CPS/L3 translation of the 
following L3 term are contifiable: 
(letrec 
   ((even (fun (x) 
            (if (= 0 x) #t (odd (- x 1))))) 
    (odd (fun (x) 
            (if (= 0 x) #f (even (- x 1)))))) 
  (even 12)) 

Cnt(F = {even, odd}) is satisfied since: 
– the single use of odd is a tail call from even ∈ F, 
– even is tail-called from odd ∈ F and called with the continuation of the 
letrec statement — the common return continuation c0 for this example.



Recursive contification

Given a set of mutually-recursive functions 
(letf ((f1 e1) (f2 e2) … (fn en)) 
  e) 

the condition Cnt(F) for some F ⊆ { f1, …, fn } can only be true if all the non tail 
calls to functions in F appear either: 

– in the term e, or 
– in the body of exactly one function fi ∉ F. 

Therefore, two separate rewriting rules must be defined, one per case.



Recursive contification #1
Case 1: all non tail calls to functions in F = { f1, …, fi } appear in the body of the 
letf, Cnt(F) holds and c0 is the common return continuation: 
(letf ((f1 (fun (c1 a1,1 …) e1)) … (fn …)) 
  Copt[e]) 
  ⇝opt (letf ((fi+1 (fun (ci+1 ai+1,1 …) ei+1))…(fn …)) 
       Copt[(letc ((m1 (cnt (a1,1 …) 
                       e1*{c1→c0})) …) 
            e*)]) 

where f1, …, fi do not appear free in Copt and e is minimal. 
Note: the term t* is t with all applications of contified functions transformed to 
continuation applications.



Recursive contification #2

Case 2: all non tail calls to functions in F = { f1, …, fi } appear in the body of the 
function fn, Cnt(F) holds and c0 is the common return continuation: 
(letf ((f1 (fun (c1 a1,1 …) e1)) … 
       (fn (fun (cn an,1 …) Copt[en]))) e) 
  ⇝opt (letf ((fi+1 (fun (ci+1 ai+1,1 …) ei+1)) … 
            (fn (fun (cn an,1 …) 
                Copt[(letc ((m1 (cnt (a1,1 …) 
                                e1*{c1→c0})) 
                          …) 
                     en*)]))) e) 

where f1, …, fi do not appear free in Copt and en is minimal.



Contifiable subsets

Given a letf term defining a set of functions F = { f1, …, fn }, the subsets of F of 
potentially contifiable functions are obtained by: 

1. building the tail-call graph of its functions, identifying the functions that 
call each-other in tail position, 

2. extracting the strongly-connected components of that graph. 
A given set of strongly-connected functions Fi ⊆ F is then either contifiable 
together, i.e. Cnt(Fi), or not contifiable at all — i.e. none of its subsets of 
functions are contifiable.


