## **Register allocation**

Advanced Compiler Construction Michel Schinz – 2025-04-03

## Setting the scene

We will do register allocation on an RTL with:

- n machine registers  $R_0, ..., R_{n-1}$  (some with non-numerical indexes like the link register  $R_{LK}$ ),
- unbounded number of virtual registers  $\nu_0, \, \nu_1, \, \dots$

Of course, virtual registers are only available before register allocation.

## Register allocation

#### **Register allocation** consists in:

- rewriting a program that makes use of an unbounded number of virtual or pseudo-registers,
- into one that only uses physical (machine) registers.

Some virtual registers might have to be **spilled** to memory.

Register allocation is done:

- very late in the compilation process typically only instruction scheduling comes later,
- on an IR very close to machine code.

## Running example

Euclid's algorithm to compute greatest common divisor.

```
\begin{array}{c} \text{In RTL} \\ \\ \text{gcd:} & R_3 \in \text{done} \\ & \text{if } R_2 = 0 \text{ goto } R_3 \\ & R_3 \in R_2 \\ & R_2 \in R_1 \ \% \ R_2 \\ & R_1 \in R_3 \\ & R_3 \in \text{gcd} \\ & \text{goto } R_3 \\ \\ \text{done:} & \text{goto } R_{LK} \\ \end{array}
```

#### Calling conventions:

- the arguments are passed in  $R_1, R_2, ...$
- the return address is passed in  $R_{\mbox{\scriptsize LK}},$
- the return value is passed in  $R_1$ .

## Register allocation example

#### Before register allocation

 $R_1$ ,  $R_2$ : parameters  $R_{LK}$ : return address

## allocable registers:

registers: R<sub>1</sub>, R<sub>2</sub>, R<sub>3</sub>, R<sub>LK</sub>



#### After register allocation

#### Allocation:

 $V_0 \rightarrow R_{LK}$   $V_1 \rightarrow R_1$   $V_2 \rightarrow R_2$   $V_3, V_4, V_5 \rightarrow R_3$ 

# Technique #1: graph coloring

## **Techniques**

We will study two commonly used techniques:

- 1. register allocation by **graph coloring**, which:
- produces good results,
- is relatively slow,
- is therefore used mostly in batch compilers,
- 2. **linear scan** register allocation, which:
- produces average results,
- is very fast,
- is therefore used mostly in JIT compilers.

Both are **global**: they allocate registers for a whole function at a time.

## Allocation by graph coloring

Register allocation can be reduced to graph coloring:

- 1. build the interference graph, which has:
- one node per register real or virtual,
- one edge between each pair of nodes whose registers are live at the same time.
- 2. color the interference graph with at most K colors (K = number of available registers), so that all nodes have a different color than all their neighbors.

#### Problems:

- coloring is NP-complete for arbitrary graphs,
- a K-coloring might not even exist.

## Interference graph example

#### Program

 $\begin{array}{l} \text{gcd:} \\ v_0 \; \in \; R_{LK} \\ v_1 \; \in \; R_1 \\ v_2 \; \in \; R_2 \\ \text{loop:} \\ v_3 \; \in \; \text{done} \\ \text{if } v_2 = 0 \; \text{goto} \; v_3 \\ v_4 \; \in \; v_2 \\ v_2 \; \in \; v_1 \; \% \; v_2 \\ v_1 \; \in \; v_4 \\ v_5 \; \in \; \text{loop} \\ \text{goto} \; v_5 \\ \text{done:} \\ R_1 \; \in \; v_1 \\ \text{goto} \; v_0 \end{array}$ 

## Liveness {in}{out}

 $\begin{cases} R_1, R_2, R_{LK} \\ \{R_1, R_2, v_0\} \\ \{R_2, v_0, v_1\} \\ \{V_0 - v_2\} \\ \{v_0 - v_2\} \\ \{v_0 - v_3\} \\ \{v_0 - v_2\} \\ \{v_0 - v_2, v_4\} \\ \{v_0 - v_2, v_5\} \\ \{v_0, v_1\} \\ \{R_1, v_0\} \\ \{R_1, v_0\} \\ \{R_1\} \end{cases}$ 



## Coloring example

#### Original prog.







## Coloring example (2)

#### Original prog.

 $\begin{array}{l} \mbox{gcd:} \\ \mbox{$v_0 \in R_{LK}$} \\ \mbox{$v_1 \in R_1$} \\ \mbox{$v_2 \in R_2$} \\ \mbox{loop:} \\ \mbox{$v_3 \in done$} \\ \mbox{$if $v_2 = 0$ goto $v_3$} \\ \mbox{$v_4 \in V_2$} \\ \mbox{$v_2 \in V_1 \% $v_2$} \\ \mbox{$v_1 \in V_4$} \\ \mbox{$v_5 \in loop$} \\ \mbox{$goto $v_5$} \\ \mbox{done:} \\ \mbox{$R_1 \in V_1$} \\ \mbox{$goto $v_0$} \end{array}$ 



### Rewritten

 $\begin{array}{l} \text{gcd:} \\ \text{R}_3 \in \text{R}_{\text{LK}} \\ \text{R}_{\text{LK}} \in \text{R}_1 \\ \text{R}_1 \in \text{R}_2 \\ \text{loop:} \\ \text{R}_2 \in \text{done} \\ \text{if } \text{R}_1 \text{=0 goto } \text{R}_2 \\ \text{R}_2 \in \text{R}_1 \\ \text{R}_1 \in \text{R}_{\text{LK}} \% \text{R}_1 \\ \text{R}_{\text{LK}} \in \text{R}_2 \\ \text{R}_2 \in \text{loop} \\ \text{goto } \text{R}_2 \\ \text{done:} \\ \text{R}_1 \in \text{R}_{\text{LK}} \\ \text{goto } \text{R}_3 \end{array}$ 

This second coloring is also correct, but produces worse code!

## Coloring by simplification

**Coloring by simplification** is a heuristic technique to color a graph with K colors:

- 1. find a node n with less than K neighbors,
- 2. remove it from the graph,
- 3. recursively color the simplified graph,
- 4. color n with any color not used by its neighbors.

What if there is no node with less than K neighbors?

- a K-coloring might not exist,
- but simplification is attempted nevertheless.

## Coloring by simplification

Number of available colors (K): 3



Stack of removed nodes: 5 2 1 3

## **Spilling**

## (Optimistic) spilling

What if all nodes have K or more neighbors during simplification?

A node n must be chosen to be **spilled** and its value stored in memory instead of in a register:

- remove its node from the graph (assuming no interference between spilled value and other values),
- recursively color the simplified graph as usual.

Once recursive coloring is done, two cases:

- 1. by chance, the neighbors of n do not use all the possible colors, n is not spilled,
- 2. otherwise, n is really spilled.

## Spill costs

Which node should be spilled? Ideally one:

- whose value is not frequently used, and/or
- that interferes with many other nodes.

For that, compute the spill cost of a node n as:

 $cost(n) = (rw_0(n) + 10 rw_1(n) + ... + 10^k rw_k(n)) / degree(n)$ 

where:

- $rw_i(n)$  is the number of times the value of n is read or written in a loop of depth i,
- $\mbox{degree(n)}$  is the number of edges adjacent to n in the interference graph.

Then spill the node with lowest cost.

## Spilling of pre-colored nodes

The interference graph contains nodes corresponding to the physical registers of the machine:

- they are said to be **pre-colored**, as their color is given by the machine register they represent,
- they should never be simplified, as they cannot be spilled (they are physical registers!).

## Spilling example: costs

 $\begin{array}{l} \text{gcd:} \\ v_0 \; \in \; R_{LK} \\ v_1 \; \in \; R_1 \\ v_2 \; \in \; R_2 \\ \text{loop:} \\ v_3 \; \in \; \text{done} \\ \text{if } v_2 = 0 \; \text{goto} \; v_3 \\ v_4 \; \in \; v_2 \\ v_2 \; \in \; v_1 \; \% \; v_2 \\ v_1 \; \in \; v_4 \\ v_5 \; \in \; \text{loop} \\ \text{goto} \; v_5 \\ \text{done:} \\ R_1 \; \in \; v_1 \\ \text{goto} \; v_0 \end{array}$ 

| node           | $rw_0$ | rw <sub>1</sub> | deg. | cost |
|----------------|--------|-----------------|------|------|
| V <sub>0</sub> | 2      | 0               | 7    | 0.29 |
| V <sub>1</sub> | 2      | 2               | 6    | 3.67 |
| V <sub>2</sub> | 1      | 4               | 6    | 6.83 |
| V <sub>3</sub> | 0      | 2               | 3    | 6.67 |
| V <sub>4</sub> | 0      | 2               | 3    | 6.67 |
| V <sub>5</sub> | 0      | 2               | 3    | 6.67 |
|                |        |                 |      |      |

 $cost = (rw_0 + 10 rw_1) / degree$ 

## Spilling example



## Consequences of spilling

After spilling, rewrite the program to:

- insert code just before the spilled value is read, to fetch it from memory,
- insert code just after the spilled value is written, to write it back to memory.

But: spilling code introduces new virtual registers, so register allocation must be redone!

In practice, 1-2 iterations are enough in almost all cases.

## Spilling code integration

#### **Original program**

```
\begin{array}{l} gcd: \\ v_0 \; \in \; R_{LK} \\ v_1 \; \in \; R_1 \\ v_2 \; \in \; R_2 \\ loop: \\ v_3 \; \in \; done \\ \text{if } v_2 = 0 \; \text{goto} \; v_3 \\ v_4 \; \in \; v_2 \\ v_2 \; \in \; v_1 \; \% \; v_2 \\ v_1 \; \in \; v_4 \\ v_5 \; \in \; loop \\ \text{goto} \; v_5 \\ done: \\ R_1 \; \in \; v_1 \\ \text{goto} \; v_0 \end{array}
```

#### gco

```
spilling
of v<sub>0</sub>
```

#### **Rewritten program**

```
gcd:

v6 ← RLK

push V6

v1 ← R1

v2 ← R2

loop:

v3 ← done

if v2 = 0 goto v3

v4 ← v2

v2 ← v1 % v2

v1 ← V4

v5 ← loop

goto V5

done:

R1 ← v1

pop V7

goto V7
```



#### Final program

```
gcd:
  R_{LK} \leftarrow R_{LK}
    push R<sub>LK</sub>
  R_1 \leftarrow R_1
  R_2 \leftarrow R_2
loop:
    R_{LK} \leftarrow done
    if R_2 = 0 goto R_{LK}
    R_{LK} \leftarrow R_2
    R_2 \leftarrow R_1 \% R_2
    R_{LK} \leftarrow loop
    goto R<sub>LK</sub>
done:
  R_1 \leftarrow R_1
    pop R<sub>2</sub>
    goto R<sub>2</sub>
```

## Coloring quality

New interference graph

Two valid K-colorings of an interference graph are not necessarily equivalent: one can lead to a much shorter program than the other.

Why? Because "move" instruction of the form

 $V_1 \leftarrow V_2$ 

can be removed if  $v_1$  and  $v_2$  end up being allocated to the same register (also holds when  $v_1$  or  $v_2$  is a real register).

Goal: make this happen as often as possible.

## **Coalescing**

## Coalescing

If  $v_1$  and  $v_2$  do not interfere, a move instruction of the form

 $V_1 \leftarrow V$ 

can always be removed by replacing  $v_1$  and  $v_2$  by a new virtual register  $v_{1\&2}$ . This is called **coalescing**, as the nodes of  $v_1$  and  $v_2$  in the interference graph coalesce into a single node.

## Coalescing issue

Coalescing is not always a good idea!

Might turn a graph that is K-colorable into one that isn't, which implies spilling. Therefore: use conservative heuristics.

## Coalescing heuristics

**Briggs**: coalesce nodes  $n_1$  and  $n_2$  to  $n_{1\&2}$  iff:

 $n_{1\&2}$  has less than K neighbors of significant degree (i.e. of a degree greater or equal to K),

 $\textbf{George} \hbox{: coalesce nodes } n_1 \hbox{ and } n_2 \hbox{ to } n_{1\&2} \hbox{ iff all neighbors of } n_1 \hbox{ either:}$ 

- already interfere with  $n_2$ , or
- are of insignificant degree.

Both heuristics are:

- safe: won't make a K-colorable graph uncolorable,
- conservative: might prevent a safe coalescing.

## Heuristic #1: Briggs

Briggs: coalesce nodes  $n_1$  and  $n_2$  to  $n_{1\&2}$  iff:

- $n_{1\&2}$  has less than K neighbors of significant degree (i.e. of a degree  $\geq$  K), Rationale:
- during simplification, all the neighbors of  $n_{1\&2}$  that are of insignificant degree will be simplified;
- once they are,  $n_{1\&2}$  will have less than K neighbors and will therefore be simplifiable too.

## Heuristic #2: George

George: coalesce nodes  $n_1$  and  $n_2$  to  $n_{1\&2}$  iff all neighbors of  $n_1$  either:

- already interfere with n<sub>2</sub>, or
- are of insignificant degree.

#### Rationale:

- the neighbors of n<sub>1&2</sub> will be:
- 1. those of  $n_2$ , and
- 2. the neighbors of n<sub>1</sub> of insignificant degree,
- the latter ones will all be simplified,
- once they are, the graph will be a sub-graph of the original one.

## Coalescing example (2)



## Coalescing example



## Coalescing example (3)



# Putting it all together

## Iterated register coalescing

Simplification and coalescing should be interleaved to get **iterated register coalescing**:

- 1. Interference graph nodes are partitioned in two classes: move-related or
- 2. Simplification is done on *not* move-related nodes (as move-related ones could be coalesced).
- 3. Conservative coalescing is performed.
- 4. When neither simplification nor coalescing can proceed further, some move-related nodes are **frozen** (marked as non-move-related).
- 5. The process is restarted at 2.

## Iterated register coalescing



# **Assignment** constraints

## Assignment constraints

Current assumption: a virtual register can be assigned to any free physical register.

Not always true because of **assignment constraints** due to:

- registers classes (e.g. integer vs. floating-point registers),
- instructions with arguments or result in specific registers,
- calling conventions.

A realistic register allocator has to be able to satisfy these constraints.

## Register classes

Most architectures have several register classes:

- integer vs floating-point,
- address vs data,
- etc.

To take them into account in a coloring-based allocator:

introduce artificial interferences between a node and all pre-colored nodes corresponding to registers to which it *cannot* be allocated.

## Calling conventions

How to deal with the fact that calling conventions pass arguments in specific registers?

At function entry, copy arguments to new virtual regs:

```
fact:
```

 $v_1 \leftarrow R_1 \qquad \text{; copy first argument to } v_1$  Before a call, load arguments in appropriate registers:

 $R_1 \leftarrow v_2$  ; load first argument from  $v_2$  CALL fact

Whenever possible, these instructions will be removed by coalescing.

## Caller/callee-saved registers

Calling conventions distinguish two kinds of registers:

- caller-saved: saved by the caller before a call and restored after it,
- **callee-saved**: saved by the callee at function entry and restored before function exit.

#### Ideally:

- virtual registers having to survive at least one call should be assigned to callee-saved registers,
- other virtual registers should be assigned to caller-saved registers.

How can this be obtained in a coloring-based allocator?

## Caller/callee-saved registers

Caller-saved registers do not survive a function call.

To model this:

Add interference edges between all virtual registers live across at least one call and (physical) caller-saved registers.

Consequence:

Virtual registers live across at least one call won't be assigned to caller-saved registers.

Therefore:

They will either be allocated to callee-saved registers, or spilled!

## Saving callee-saved registers

Callee-saved registers must be preserved by all functions, so:

- copy them to fresh temporary registers at function entry,
- restore them before exit.

## Saving callee-saved registers

For example, if  $R_8$  is callee-saved:

```
entry:
```

If register pressure is low:

- $R_8$  and  $v_1$  will be coalesced, and
- the two move instructions will be removed.

If register pressure is high:

-  $v_1$  will be spilled, making  $R_8$  available in the function (e.g. to store a virtual register live across a call).

## Technique #2: linear scan

#### Linear scan

The basic linear scan technique is very simple:

- the program is linearized i.e. represented as a linear sequence of instructions, not as a graph,
- a unique live range is computed for every variable, going from the first to the last instruction during which it is live,
- registers are allocated by iterating over the intervals sorted by increasing starting point: each time an interval starts, the next free register is allocated to it, and each time an interval ends, its register is freed,
- if no register is available, the active range ending last is chosen to have its variable spilled.

## Linear scan example

Linearized version of GCD computation:

# $\begin{array}{cccc} \textbf{Program} \\ 1 \ \text{gcd:} & v_0 \leftarrow R_{LK} \\ 2 & v_1 \leftarrow R_1 \\ 3 & v_2 \leftarrow R_2 \\ 4 \ \text{loop:} & v_3 \leftarrow \text{done} \\ 5 & \text{if } v_2 = 0 \ \text{goto} \ v_3 \\ 6 & v_4 \leftarrow v_2 \\ 7 & v_2 \leftarrow v_1 \ \% \ v_2 \\ 8 & v_1 \leftarrow v_4 \\ 9 & v_5 \leftarrow \text{loop} \\ 10 & \text{goto} \ v_5 \\ 11 \ \text{done:} & R_1 \leftarrow v_1 \\ 12 & \text{goto} \ v_0 \\ \end{array}$

| Live ranges               |  |  |  |
|---------------------------|--|--|--|
| v <sub>0</sub> : [1+,12-] |  |  |  |
| v <sub>1</sub> : [2+,11-] |  |  |  |
| v <sub>2</sub> : [3+,10+] |  |  |  |
| v <sub>3</sub> : [4+,5-]  |  |  |  |
| v <sub>4</sub> : [6+,8-]  |  |  |  |
| v <sub>5</sub> : [9+,10-] |  |  |  |
| Notation:                 |  |  |  |
| i+ entry of instr. i      |  |  |  |
| i⁻ exit of instr. i       |  |  |  |
|                           |  |  |  |

## Linear scan example (4 r.)



| time active intervals                 | allocation                                                                              |
|---------------------------------------|-----------------------------------------------------------------------------------------|
| 1+ [1+,12-]                           | v₀→R₃                                                                                   |
| 2+ [2+,11-],[1+,12-]                  | v <sub>0</sub> →R <sub>3</sub> , v <sub>1</sub> →R <sub>1</sub>                         |
| 3+ [3+,10+],[2+,11-],[1+,12-]         | $v_0 \rightarrow R_3, v_1 \rightarrow R_1, v_2 \rightarrow R_2$                         |
| 4+ [4+,5-],[3+,10+],[2+,11-],[1+,12-] | $v_0 \rightarrow R_3, v_1 \rightarrow R_1, v_2 \rightarrow R_2, v_3 \rightarrow R_{LK}$ |
| 6+ [6+,8-],[3+,10+],[2+,11-],[1+,12-] | $v_0 \rightarrow R_3, v_1 \rightarrow R_1, v_2 \rightarrow R_2, v_4 \rightarrow R_{LK}$ |
| 9+ [9+ 10-][3+ 10+][2+ 11-][1+ 12-]   | VAARA VIARI VAARA VEARIK                                                                |

Result: no spilling

Linear scan example (3 r.)



| time active intervals         | allocation                                                                                                 |
|-------------------------------|------------------------------------------------------------------------------------------------------------|
| 1+ [1+,12-]                   | V₀→RLĸ                                                                                                     |
| 2+ [2+,11-],[1+,12-]          | V <sub>0</sub> →R <sub>LK</sub> ,V <sub>1</sub> →R <sub>1</sub>                                            |
| 3+ [3+,10+],[2+,11-],[1+,12-] | $v_0 \rightarrow R_{LK}, v_1 \rightarrow R_1, v_2 \rightarrow R_2$                                         |
| 4+ [4+,5-],[3+,10+],[2+,11-]  | $v_0 \rightarrow S$ , $v_1 \rightarrow R_1$ , $v_2 \rightarrow R_2$ , $v_3 \rightarrow R_{LK}$             |
| 6+ [6+,8-],[3+,10+],[2+,11-]  | $\vee_0 \rightarrow S$ , $\vee_1 \rightarrow R_1$ , $\vee_2 \rightarrow R_2$ , $\vee_4 \rightarrow R_{LK}$ |
| 9+ [9+,10-],[3+,10+],[2+,11-] | $V_0 \rightarrow S$ , $V_1 \rightarrow R_1$ , $V_2 \rightarrow R_2$ , $V_5 \rightarrow R_{LK}$             |

Result: v<sub>0</sub> is spilled during its whole life time!

## Linear scan improvements

The basic linear scan algorithm is very simple but still produces reasonably good code. It can be – and has been – improved in many ways:

- the liveness information about virtual registers can be described using a sequence of disjoint intervals instead of a single one,
- virtual registers can be spilled for only a part of their whole life time,
- more sophisticated heuristics can be used to select the virtual register to spill,
- etc.

...